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1. Introduction

SafeDrive aims to address the critical need for enhanced
road safety through an advanced detection system. This sys-
tem is designed to identify key elements such as lanes, traf-
fic signs, and pedestrians, which are essential for reducing
traffic accidents and improving driving conditions. The mo-
tivation for this project stems from the increasing demand
for sophisticated safety features in modern automobiles and
the potential for applications in other areas such as road
construction and maintenance machinery.

Existing literature indicates that while individual detec-
tion systems for pedestrians [9], lanes [8], and traffic signs
[11] exist, their integration into a unified system presents a
significant challenge. Our approach to SafeDrive involves
the development of a modular, ML-based framework that
allows for the individual training of each feature (lanes, traf-
fic signs, pedestrians) and their integration into a compre-
hensive safety detection system. This modular design fa-
cilitates the potential inclusion of new ML-trained features
to further provide a well-rounded system for ensuring road
safety. In addition, we aim at improving the robustness of
our framework under various extreme weather and lighting
conditions, as we notice the available traffic datasets [4, 17]
contain only a small number of these kinds of data, hence
potentially yielding inconsistent and unreliable results for
these scenarios. We tackle these issue by adopting a train-
ing strategy that can make our system capable of performing
zero-shot prediction under these scenarios.

The preliminary results highlight the potential of our ML
models in individual tasks. In addition, our incorporation of
the weather-invariance training pipeline with the lane detec-
tion task suggests the great potential of our current strategy
when dealing with extreme environmental conditions. By
building on existing studies and addressing the identified
gaps, SafeDrive is positioned to significantly contribute to
the evolution of road safety technologies.

2. Details of the approach

Figure 1 illustrates the overall workflow of our SafeDrive
system, which comprises three distinct modules: Lane De-
tection, Pedestrian Detection, and Traffic Sign Detection.

Figure 1. Overall pipeline of SafeDrive system.

Each module is tasked with specific functions that collec-
tively enhance driving safety.

During the training phase, each module is trained and
evaluated independently. In addition to the standard training
strategy that focuses on task-specific objectives, we have
implemented a unique training step called Extreme Invari-
ance Training. This step aims to enhance the robustness
of each module against variations in environmental condi-
tions such as lighting changes or weather changes. Detailed
descriptions of each module can be found in the respective
subsections: Lane Detection (2.1), Traffic Sign Detection
(2.2) and Pedestrian Detection (2.3). The methodology and
benefits of the Extreme Invariance Training are elaborately
discussed in Section 2.4. Following the independent train-
ing, the modules are combined using a late fusion approach
for deployment.

In the deployment phase, the system processes input
video data in parallel across all modules. The results from
each module are then aggregated and presented simultane-
ously, ensuring a comprehensive and real-time response to
driving conditions.

2.1. Lane Detection

Our primary objective in the lane detection task is to
identify lane markings in 2D space (image space) by pin-
pointing the 2-D coordinates of various lane lines. We are
committed to detecting all visible lanes located between the
left and right curbsides.

Baseline. With this task, we utilize the CondLSTR [5], a
transformer-based architecture that has demonstrated supe-
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Figure 2. Simplified Architecture of CondLSTR. This figure is re-
drawn from original paper.

rior performance in benchmarks such as OpenLane [4] and
CurveLane [17]. Figure 2 illustrates the decoder architec-
ture of this framework, which consists of a series of Trans-
former blocks designed to accomplish two primary tasks:
(1) generating dynamic convolutional kernels for each lane
line from the extracted feature map, and (2) applying these
dynamic kernels to the feature map to detect final lane lines.
The process begins with a CNN backbone that extracts a
feature map from the input image. Subsequently, within
the Transformer block, the dynamic kernel head employs
a sequence of learnable lane queries representing differ-
ent prototypes of lane lines, together with cross-attention
mechanism to generate dynamic convolutional kernels tai-
lored for each lane line from the feature map. This archi-
tecture produces two sets of dynamic kernels, one generat-
ing a heat map and the other an offset map for each lane
line. The lane detection head then detects lane lines by con-
volving these dynamic kernels with the feature map. Ad-
ditionally, the framework predicts a vertical range and an
object score for each lane line, enhancing the accuracy of
the lane detection. The detected lane points are extracted
from the heat maps, offset maps, vertical ranges, and object
scores through a series of post-processing steps. To refine
the model’s accuracy, a bipartite matching loss is computed
between the predicted lane lines and ground-truth data. The
transformer-based generation of kernels captures the global
information of lane lines across the entire feature map, en-
abling the model to handle occlusions and complex lane line
topologies more effectively compared to traditional meth-
ods that generate kernels from specific key locations.

Modification. Although CondLSTR currently achieves
state-of-the-art results on several benchmark datasets, we
acknowledge that the training costs associated with oper-
ating this entire Transformer-based pipeline are substantial
and highly dataset-specific. Drawing inspiration from ex-
tensive research that employs frozen image encoders for
various downstream tasks [10, 14], we propose a hypothe-
sis: by using a robust and generic frozen image encoder, we
may only need to fine-tune the Decoder module of CondL-

STR for different datasets. This hypothesis is based on the
complexity and high representational capability of the ar-
chitecture. Motivated by this hypothesis, we replaced the
trainable ResNet-34 backbone [7] in CondLSTR with the
frozen image encoder from CLIP [15]. To accommodate
the CLIP encoder, we adjusted the dimensions in the sub-
sequent decoding steps accordingly. This substitution sig-
nificantly reduces the number of trainable parameters when
adapting to different datasets. Furthermore, this modifica-
tion plays a pivotal role in enhancing the efficiency of the
Extreme Invariance Training process, which is detailed fur-
ther in Section 2.4.

2.2. Traffic Sign Detection

Baseline. We selected YOLOv8 [1] as the backbone for
our traffic detection task due to its leading-edge capabilities
in real-time object detection and image segmentation. This
choice was driven by several key benefits:

• Rapid and Accurate Detection. YOLOv8 delivers
fast and precise object detection, essential for real-
time applications, which perfectly suits the need of
SafeDrive system.

• Enhanced Traffic Management. The model’s effi-
ciency in recognizing various traffic signs contributes
significantly to improving road safety through better
traffic management systems.

To accelerate convergence, we adopt the pretrained
YOLOv8 on COCO dataset [13] for detection task. Ow-
ing to constraints on computational resource, we work with
the nano variance of this model - YOLOv8n.

2.3. Pedestrian Detection

Baseline. Initially, we aimed to develop a Traffic Sign
Detection feature using YOLOv8 trained on the Penn-
Fudan dataset [16]. However, due to the limited size of
this dataset, we were unable to effectively train the model,
prompting us to utilize a pre-trained YOLOv8 model from
Ultralytics [1], the same choice we adopt for the Traffic De-
tection task. We initially chose the Penn-Fudan dataset for
its urban environment pedestrian images, which are scarce
in larger datasets. Despite attempts to expand the dataset
through data augmentation, its size ultimately required the
adoption of a pre-trained model.

Modification. Our pedestrian detection framework,
however, is robust enough to handle various types of pedes-
trian movements, such as walking or biking. It is designed
to process video inputs effectively, as demonstrated in our
demo, and can be updated to capture live vehicle footage
with minor code adjustments. The feature is optimized to
process frames significantly faster than 30 frames per sec-
ond, with our tests showing it can handle 640 by 384 frames



at 43 frames per second in the worst-case scenario. There-
fore, it can easily manage live feeds at 30fps or even at
higher resolutions under the current configuration.

2.4. Extreme Invariance Training

Baseline. To enhance performance under extreme
weather and lighting conditions, we initially consid-
ered augmenting raw image frames and fine-tuning the
SafeDrive modules using this data, following the method-
ology outlined in [12]. However, we encountered prac-
tical limitations due to constraints in storage and compu-
tational resources. As an alternative, we adopted a tech-
nique from a recent study [6] that modifies models to adapt
to new domains using text prompts about the target do-
main, thus eliminating the need for actual target images.
This innovative method utilizes CLIP encoders to align
the image features from the source domain with the text
embeddings of the target domain. It preserves the origi-
nal content and semantics through Prompt-driven Instance
Normalization (PIN). The transformations are stored in a
memory-resident dictionary, which facilitates the efficient
fine-tuning of the classifier without incurring significant
memory or time costs.

Modification. We have incorporated the methodology
described in [6] into our training pipeline, which we term
Extreme Invariance Training, for each targeted task within
the SafeDrive system. Given the limited time constraints
of our group project, we implemented this strategy specifi-
cally for the Lane Detection task. In this context, the source
domain involves lane detection under normal conditions,
while the target task focuses on lane detection in extreme
environmental scenarios. The Extreme Invariance Training
procedure is structured into three distinct steps:

• Source-only training: Train SafeDrive’s modules on
the desired tasks using source datasets.

• Zero-shot feature augmentation: Utilize the PIN
module [6] to learn the style parameters necessary for
transforming normal image features into features that
reflect varied weather or lighting conditions.

• Classifier fine-tuning: Retrain the modules’ classi-
fiers by integrating the newly styled features into the
original image features of the training datasets. This
results in a framework with zero-shot capabilities, en-
abling robust performance under extreme weather or
lighting conditions.

It is important to note that Extreme Invariance Training in-
volves the use of a set of text templates representing the tar-
get domains, which are essential for adapting source tasks
to extreme weather settings. We have developed these tem-
plate sets specifically tailored for the datasets of interest.

3. Experiment Settings and Results
3.1. Lane Detection

Dataset. We utilize a streamlined version of Open-
Lane [4] for training and evaluating our 2D Lane Detec-
tion task. The training dataset comprises a total of 240
video sequences, with 60 sequences reserved for testing
and evaluation. Additionally, this dataset includes meta-
data annotations about each video’s scene information. We
leverage the metadata fields weather and hours to se-
lectively identify a subset of sequences that exhibit extreme
weather conditions, such as rain, fog, or overcast skies, as
well as challenging lighting conditions, such as nighttime or
dawn/dusk. This subset is then used to evaluate the weather
invariance characteristics of our trained framework. Figure
3 illustrates frames captured from two videos corresponding
to these two testing sets.

Figure 3. Our two OpenLane testing datasets.

Metrics. For quantitative analysis, we employ the same
evaluation metrics as those detailed in [5], namely F1 Score,
Precision, and Recall. These metrics are calculated by com-
paring the lanes detected by our system with the ground-
truth lane annotations. The determination of whether a lane
detection is classified as a true positive (TP) or a false neg-
ative (FN) relies on the intersection-over-union (IoU) met-
ric. Specifically, the IoU for lane lines is assessed based on
the overlap between the masks of the predicted and ground-
truth lanes, which maintain a uniform line width of 30 pix-
els, the alignments of at least 20 pixels are considered TPs,
as established in [5].

Settings. In this experiment, we evaluate three variants
of the CondLSTR framework: (1) the original CondLSTR
equipped with a ResNet-34 backbone; (2) CondLSTR aug-
mented with a frozen CLIP encoder; and (3) CondLSTR
enhanced with both a frozen CLIP encoder and Extreme In-
variance Training. Variants (1) and (2) are each trained over
20 epochs without the use of a validation set. Variant (3)
undergoes an additional fine-tuning phase where the detec-
tor from Variant (2) is fine-tuned using style-injected image
features for 5 extra epochs. The metrics reported for the
testing dataset reflect the outcomes from the models at the
completion of their respective final epochs.

Result. Normal testing set. Table 1 presents the evalua-



Figure 4. Prediction made in different environmental conditions.

tion results of all model variants on the standard OpenLane
testing dataset, which consists of 60 segments. Replac-
ing the ResNet-34 backbone with the CLIP image encoder
not only reduces the number of trainable parameters but
also enhances performance, supporting our initial hypoth-
esis for this modification. Furthermore, the implementa-
tion of Extreme Invariance Training significantly improves
performance, indicating that this strategy is effective in en-
hancing model robustness under extreme conditions while
preserving its efficacy in normal scenarios.

Table 1. Lane Detection evaluation on normal testing set.

Model Avg. F1 Avg. Precision Avg. Recall

CondLSTR (1) 0.739 0.793 0.692
CondLSTR (2) (our) 0.766 0.824 0.716
CondLSTR (3) (our) 0.799 0.835 0.767

Extreme testing set. Similarly, we report the perfor-
mance of the three variants on our specially constructed
datasets, which include scenes under extreme conditions.
As observed in the normal settings, the same pattern is ev-
ident here: both modified variants demonstrate improve-
ments in average performance across all recorded metrics
compared to the original model. Figure 4 illustrates some
actual predictions made by the third variant of CondLSTR
under various environmental conditions.

Table 2. Lane Detection evaluation on extreme testing set.

Model Avg. F1 Avg. Precision Avg. Recall

CondLSTR (1) 0.761 0.782 0.742
CondLSTR (2) (our) 0.799 0.835 0.767
CondLSTR (3) (our) 0.827 0.863 0.795

3.2. Traffic Sign Detection

Dataset. Our YOLOv8 model for traffic sign detection is
trained and evaluated on the Kaggle’s traffic signs detection
dataset [2], which comprises 4,969 samples. These samples
are distributed across training (71%), validation (16%), and
testing (13%) sets. Figure 5 illustrate some images sampled
from this dataset.

Figure 5. Kaggle Traffic Sign Detection dataset.

Metrics. The mean Average Precision (mAP) was calcu-
lated by averaging the Average Precision (AP) scores across
various Intersection over Union (IoU) thresholds. These
thresholds range from 0.5 to 0.95, increasing in increments
of 0.05. This calculation provides a comprehensive mea-
sure of the model’s detection precision across a spectrum of
overlapping scenarios.

Settings. Training was carried out for 50 epochs, with
early stopping implemented to prevent overtraining based
on the validation loss. Each image was resized to 416×416
pixels. The model’s hyperparameters were determined
through experimentation, with a batch size of 64 and a
dropout rate of 0.15. Table 3 summarize some statistics
recorded during training on different epochs, with different
choice of learning rate configurations.

Table 3. Traffic Sign detection training statistics.

Hyperparameters mAP50 mAP50-95

Epoch
10 0.189 0.132
30 0.482 0.321
50 0.651 0.548

Learning rate (epoch10) 1e-4 0.189 0.132
3e-4 0.193 0.173

Results. After the training process, the qualitative results
on the Kaggle testing dataset indicated that mAP50 reached
a score of 0.651, and mAP50-95 scored 0.549. These out-
comes were achieved by the variant that recorded the high-
est mAP score on the validation dataset during training. Ad-
ditionally, the PR-curve and F1-confidence curve are visu-
alized in Figure 6 for this model. As illustrated in Figure
6a, the PR AUC for the classes red light, green light, and
stop sign is significantly high. However, the speed limit
sign class shows lower accuracy, which impacts the over-
all PR AUC of the model negatively. The PR curve indi-



cates a sharp drop from the top right corner, suggesting that
improvements are needed to enhance recall. Furthermore,
Figure 6b reflects high confidence in classifying green light,
red light, and stop sign, aligning with the PR curve findings.
However, classes such as speed limit 100, speed limit 110,
and speed limit 80, which show high uncertainty in predic-
tions, have low F1 scores. This highlights the necessity for
additional targeted training for these specific classes.

Figure 6. P-R curve and F1-condidence curve of our YOLOv8
model for Traffic Detection.

Figure 7. Traffic sign detection in challenging cases.

To understand the model’s behavior, it was evaluated on
challenging test cases, including images with low resolu-
tion, multiple traffic signs, and cluttered backgrounds. We
conducted a qualitative evaluation under the following sce-
narios:

• Low resolution. Images with low resolution challenge
the model’s ability to detect and classify signs accu-
rately under degraded image quality, which is common
in real-world scenarios due to factors such as camera
quality or image compression. As shown in Figure
7a, the model struggles to distinguish speed limit signs
when the image resolution is very low.

• Multiple signs in a single image. This test case as-
sesses the model’s capability to detect and classify
multiple signs within a single image, which is crucial
because real-world environments often contain mul-
tiple signs in close proximity. The model generally
distinguishes these signs (Figure 7b), but can some-
times misclassify similar-looking numbers (e.g., ’20’
and ’50’ on speed limit signs), as shown in Figure 7c.

• Cluttered background. Images with complex or clut-
tered backgrounds present challenges in isolating and
recognizing traffic signs. This test case evaluates the
model’s robustness in real-world driving environments
where signs may be surrounded by various distrac-
tions. Despite these challenges (Figure 7d), the model
is expected to perform well in detecting signs accu-
rately.

3.3. Pedestrian Detection

We include the result of pretrained YOLOv8 model on
COCO dataset [13] for person class in Figure 8 and Table
4.

Figure 8. Person detection with YOLOv8 on COCO.

Table 4. Person detection with YOLOv8 on COCO.

Class Box Precision Box Recall Box mAP50 Box mAP50-05

Pedestrian 0.755 0.671 0.745 0.514

Since a pre-trained model, YOLOv8, was used to han-
dle the detections for this feature, we wanted to compare
how accurate the detects are for this feature compared to
other models. To qualitatively verify this, we first find pub-
lic demos of pedestrian detection. Given the same input
videos/photos, we can see how well our pedestrian detec-
tion feature can do given the same inputs. Doing that we
can visually see how our feature compares to other models.

Figure 9 presents key observations from our experiment.
It highlights that the detections marked in blue demonstrate
a tighter region, indicating more precise detections com-
pared to the comparison model, which marks its detections



Figure 9. Qualitative assessment of YOLOv8 compared with other
models.

in green/yelow using a HOG+SVG approach [3]. This sug-
gests that our model provides enhanced accuracy in identi-
fying targets, compared to this existing pipelines.

3.4. Joint evaluation

We establish a joint pipeline to aggregate the results from
all modules using input videos, producing the final outputs
for SafeDrive. We have prepared demo videos along with
their corresponding outputs, which are available on a shared
Google Drive accessible via this link. The selection of demo
videos includes one recorded under normal environmental
conditions and another under extreme conditions, to demon-
strate the system’s effectiveness across different scenarios.
Our presentation that briefly go through each module, can
be found at this link.

4. Conclusion and Discussion
4.1. Lane Detection

We upgraded the CondLSTR framework, a leading solu-
tion for 2D Lane Detection, by replacing its ResNet back-
bone with CLIP’s frozen image encoder, significantly re-
ducing trainable parameters and slightly improving results.
Integrating Extreme Invariance Training also enhanced the
framework’s resilience to extreme environmental condi-
tions. However, due to time and computational constraints,
our experiments were limited in number and scope, poten-
tially affecting the completeness of model convergence and
our findings’ robustness. Future work will focus on validat-
ing our methods across more datasets for a thorough evalu-
ation.

4.2. Traffic sign detection

The qualitative evaluation of our traffic sign detection
model revealed key issues: it struggles with accurate detec-
tion and classification in low-resolution images and distin-
guishing similar numbers on speed limit signs in complex
or cluttered backgrounds. These challenges may stem from
hardware limitations and the limited training data scope.
Despite using data augmentation, the dataset size and qual-
ity remain constraints. The model required over a day to
train for 50 epochs. Possible improvements include acquir-
ing more diverse data, increasing training duration, and us-

ing techniques like histogram of oriented gradients to better
differentiate similar features. While promising, the model
requires further optimization for real-world efficacy.

4.3. Pedestrian Detection

The development of our pedestrian detection feature re-
vealed several challenges. Inconsistencies in detections
were noted, particularly under harsh or low lighting con-
ditions, varying weather, and differing skin tones in the
training data. These factors are critical, especially in ve-
hicular applications where accurate detection is essential to
avoid potentially fatal outcomes in self-driving models. Ad-
dressing these challenges requires utilizing large datasets
encompassing a broad range of training scenarios. An-
other issue was the significant overhead development re-
quired to integrate large, multiple datasets, which limited
our available development time. Ultimately, we employed a
smaller dataset that yielded poorer results compared to the
pre-trained YOLOv8 model.

5. Work done by Individuals
• Duy Nguyen - duyan2 - contribution weight: 0.28

Conducted a literature review, adapted and imple-
mented enhancements atop two existing code reposi-
tories, tuned parameters and ran experiments, and pre-
pared the report and presentation for the Lane Detec-
tion and Extreme Environmental Invariance tasks. Ad-
ditionally, implemented the joint evaluation pipeline
for all modules.

• Dahui Song - dahuis2 - contribution weight:
0.28 Implemented traffic sign detection, trained the
YOLOv8 model on a manageable dataset, and experi-
mented with various training parameters. Conducted
comprehensive quantitative and qualitative evalua-
tions, including diverse test cases, to assess the
model’s performance.

• Aniketh Aangiras - aniketh3 - contribution weight:
0.22 Focused on developing the Pedestrian Detection
feature, beginning with dataset selection and literature
review. Transitioned to using a pre-trained YOLOv8
model due to limitations of the Penn-Fudan dataset in
training an effective model.

• Ronald Roy - rroy21 - contribution weight: 0.22
Initially aimed to create a rear-end accident detection
feature. Faced challenges due to the unavailability of
suitable datasets due to privacy laws and minimal high
deceleration event data. Shifted focus to enhance the
Pedestrian Detection feature, achieving significant im-
provements in accuracy and processing speed, and in-
tegrated the feature into the common framework with
robust and adaptable code.

https://drive.google.com/drive/folders/19GQ97oR-pw4TnYI45l_DGgplNuawduIO?usp=sharing
https://mediaspace.illinois.edu/media/t/1_n6cdv7s7
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Supplementary Material

A. Lane Detection
A.1. Experiment Settings

While most hyper-parameters are inherited from original work of [5], we list our some important change made in our
codebase regarding experimental settings in Table 10. Figure 10 is the screen capture recording our training statistics with
Tensorboard. Due to the mis-configuration in setting individual run names, we can only visualize the aggregated training
statistics of all runs.

Table 5. Key change in hyper-parameters setting for CondLSTR.

CondLSTR (1) CondLSTR (2) CondLSTR (3)

Input size 940x480 768x768 768x768
Encoder’s output dim 256 2048 2048
Train epochs 20 20 5
Train module Encoder + Detector Detector Detector - on weight of (2)

Figure 10. Training statistics of CondLSTR variances.


