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Toward Engineering AGI: Benchmarking the
Engineering Design Capabilities of LL.Ms

EngDesign Benchmark Team*

Abstract

Modern engineering, spanning electrical, mechanical, aerospace, civil, and com-
puter disciplines, stands as a cornerstone of human civilization and the foun-
dation of our society. Today, industry pioneers dream of developing general-
purpose Al engineers capable of designing and building humanity’s most ambitious
projects—from starships that will carry us to distant worlds to Dyson spheres that
harness stellar energy. Yet engineering design represents a fundamentally different
challenge for large language models (LLMs) compared to traditional textbook-style
problem solving or factual question answering. Although existing benchmarks have
driven progress in areas such as factual question answering, code synthesis, and
scientific problem solving, real-world engineering design demands the synthesis
of domain knowledge, navigation of complex trade-offs, and management of the
tedious processes that consume much of practicing engineers’ time. Despite these
shared challenges across engineering disciplines, no benchmark currently captures
the unique demands of engineering design work. In this work, we introduce EN-
GDESIGN, an Engineering Design benchmark that evaluates LLMs’ abilities to
perform practical design tasks across nine engineering domains: Operating Sys-
tem Design, Computer Architecture Design, Control System Design, Mechanical
Systems, Structural Design, Digital Hardware Design, Analog Integrated Circuit
Design, Robotics, and Signal Processing. Unlike existing benchmarks that focus
on factual recall or question answering, ENGDESIGN uniquely emphasizes LLMs’
ability to synthesize domain knowledge, reason under constraints, and generate
functional, objective-oriented designs. Each task in ENGDESIGN represents a
real-world engineering design problem, accompanied by a detailed task description
specifying design goals, constraints, and performance requirements. We pioneer
a simulation-based evaluation paradigm where LLM-generated designs undergo
rigorous testing through executable, domain-specific simulations—from circuit
SPICE simulations to structural finite element analysis, from control system val-
idation to robotic motion planning. ENGDESIGN establishes a new benchmark
paradigm that moves beyond textbook knowledge to assess genuine engineering
capability and shifts evaluation from static answer checking to dynamic, simulation-
driven functional verification, marking a crucial step toward realizing the vision of
engineering AGI.

1 Introduction

Modern engineering, spanning electrical, mechanical, aerospace, civil, and computer disciplines
[1, 2, 3, 4], stands as a cornerstone of human civilization and the foundation of our society. From
the electrical grids powering our cities to the aerospace systems launching us beyond Earth, from

*The ENGDESIGN Team includes over 60 contributors comprising core developers, task contributors, and
domain faculty experts. Due to space constraints, the full author list is provided in the Appendix.
Correspondence to: Xingang Guo xingang2@illinois.edu, Bin Hu binhu7@illinois.edu.
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analog integrated circuits forming the foundation of electronics to the structural designs supporting
our skylines, engineering disciplines have woven themselves into the fabric of human existence
[5, 6, 7]. Atits core, engineering design is the systematic and creative process that engineers use to
solve problems and create functional products, systems, or processes, transforming requirements and
constraints into tangible solutions that meet human needs. Recent advances in large language models
(LLMs) have led to remarkable performance on conventional question-answering (QA) benchmarks,
with strong results across a wide range of tasks—from textbook-level scientific problem solving
[8,9, 10, 11], to code synthesis [12, 13, 14], and even to answering textbook-level questions across
various engineering domains [15, 16, 17]. Today, industry leaders aspire to build on such progress
in LLMs to create general-purpose Al engineers capable of bringing to life humanity’s boldest
ambitions-from interstellar starships to Dyson spheres that harvest stellar energy-leveraging these
foundation models’ vast knowledge across engineering domains and their potential to transcend
traditional disciplinary boundaries that constrain human engineers [18].

However, practical engineering design confronts LLMs with a grand challenge profoundly different
and vastly more complex than conventional factual recall or textbook-level engineering problem
solving. Specifically, real-world engineering design demands the synthesis of domain knowledge,
navigation of complex trade-offs, management of the tedious processes that consume much of
practicing engineers’ time, and rigorous validation through domain-specific simulators to ensure that
designs meet functional requirements and safety constraints. Yet despite progress in textbook-level
engineering problem solving, no existing benchmark captures the distinctive demands of practical
design work—with its multifaceted, open-ended challenges across multiple engineering disciplines.

In this work, we introduce ENGDESIGN, the first benchmark for holistically evaluating LLMs
on authentic, multi-domain engineering design challenges. Unlike traditional QA formats, our
benchmark requires models to function as practicing engineers, producing functional solutions,
such as dynamical system controllers, material structure designs, analog integrated circuits, or GPU
architectures that meet rigorous performance requirements. ENGDESIGN uniquely emphasizes
the synthesis of domain knowledge, constraint-based reasoning, and the generation of functional,
objective-oriented designs, spanning practical design problems across nine engineering domains:
Operating System Design, Computer Architecture Design, Control System Design, Mechanical
Systems, Structural Design, Digital Hardware Design, Analog Integrated Circuit Design, Robotics,
and Signal Processing. Each task in ENGDESIGN is accompanied by an executable evaluation
pipeline that validates designs against task requirements using domain-specific simulation tools
such as SPICE simulations [19], structural finite element analysis [20], MATLAB Control System
Toolbox [21], and other scientific software tailored to specific engineering domains. Our approach
establishes a revolutionary evaluation paradigm: assessment using engineering simulation tools.
This simulation-based approach fundamentally shifts evaluation from linguistic pattern matching to
functional verification, ensuring that solutions are assessed based on their engineering merit rather
than textual plausibility.

ENGDESIGN advances LLLM evaluation methodology by moving beyond conventional question-
answering benchmarks to address the open-ended, constraint-driven nature of real-world engineering
design. Our key contributions include:

¢ The first multi-domain engineering design benchmark. Unlike QA benchmarks that
test narrow factual or procedural knowledge, ENGDESIGN evaluates LL.Ms on complex
engineering design challenges spanning diverse engineering disciplines (e.g., mechanical,
electrical, civil), requiring synthesis of domain knowledge, constraint satisfaction, and strong
reasoning capabilities.

* Executable simulation-based evaluation. We replace static correctness checks with
dynamic, domain-specific evaluation pipelines. Each task includes human-designed task-
specific evaluation scripts that rigorously verify functional feasibility (e.g., via simulation,
constraint validation, or performance testing), ensuring objective, reproducible scoring
grounded in real engineering standards.

* Partial-credit grading for incomplete solutions. Conventional benchmarks often use
binary scoring, but ENGDESIGN’s rubrics quantify incremental progress (e.g., 20/100 for
delivering a stable controller that meets partial performance requirements). This granularity
reveals nuanced capability gaps and rewards iterative refinement.
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QA Style Question Design Style Task

A sample question from MMLU-Pro A sample task from EngDesign (Ours)
Two long parallel conductors carry 100A. If the In this task, you are required to design a sui thi (Th)ofar steel beam subj d
conductors are separated by 20 mm, the force per meter to a dual-point load, applied at the quarter-span locations -+ You are given the following fixed parameters:
of length of each conductor will be -'L=1000'mm (Totalspan length)
(A) 100N -'w=40"mm (Beam width, constant)
(B) 0.01N - Two vertical downward forces: F = 1000 N each, applied at quarter-span locations
(C) 10N - Material properties:
(D) 0.5N - Young’s modulus: 210,000 MPa
(E) 0.001N - Poisson’s ratio: 0.3
(F) 5N
(G) 1N Your task is to:
(H) 50N - Propose a structurally sound value for Th (thickness of the beam, in mm)
() 01N - Provide a brief justification for your choice of thickness, considering stiffness, loading, and geometric
(J) 0.0001 N constraints.
QA Style Evaluation Design Style Evaluation
Design z , fT’\ —]
Answer Extraction % Extraction H g
-
LLM Responses Program-based Performance Check Evaluation Results
LLM Responses Evaluation Results Design specifications  simulation Performance check Binary pass/fail
Options from (A) to (J) String-matching/LLM-judge proposed by LLMs Domain-specific against design goals Numerical score
simulations and Evaluation log

Binary correct or wrong "
obtain performances

Figure 1: Comparison between conventional QA-style benchmarks (left) and the design-style bench-
mark ENGDESIGN (right). Conventional QA benchmarks evaluate LLMs through static answer
extraction and string-matching, while ENGDESIGN involves open-ended design tasks with potentially
non-unique solutions. LLMs must propose candidate design specifications, which are evaluated via
program-based simulations and performance validation pipelines.

* Empirical validation of design competencies. Through large-scale evaluations across
10+ state-of-the-art LLMs including both general-purpose LLMs and reasoning models,
we demonstrate ENGDESIGN’s ability to expose critical limitations in Al systems—such
as over-reliance on textual patterns or failure to handle trade-offs—that are invisible to
traditional benchmarks.

We believe that ENGDESIGN marks a crucial milestone toward realizing engineering AGI by breaking
new ground with its comprehensive coverage of engineering design problems across diverse domains,
each requiring deep technical expertise and domain-specific simulation tools for rigorous evaluation.
This benchmark not only measures what models know but what they can actually design, bridging
the chasm between textbook-level knowledge understanding and practical engineering capability.

2 ENGDESIGN

In this section, we introduce ENGDESIGN, a multi-domain benchmark developed to evaluate the
capabilities of LLMs in real-world engineering design tasks. Unlike conventional QA benchmarks,
ENGDESIGN adopts a rigorous simulation-based evaluation pipeline to assess model performance in
practical, design-oriented scenarios. Table | summarizes the benchmark’s key statistics: it comprises
101 design tasks spanning 9 engineering domains, with a total of 473 gradable items. While the task
distribution may appear uneven, it naturally reflects the domain expertise of our contributors and
the filtering rigor imposed by our multi-stage review process. Notably, the average prompt length in
ENGDESIGN is 778.71 tokens, substantially higher than typical QA benchmarks”, highlighting the
contextual richness and complexity of realistic engineering design problems. Word clouds generated
from ENGDESIGN prompts are included in Appendix D.

Among the 101 tasks in ENGDESIGN, 48 tasks require domain-specific scientific software such
as MATLAB or Cadence for evaluation, while the remaining 53 tasks are fully open-sourced and
evaluated using manually authored evaluation scripts. We consolidate these tasks into a subset
called ENGDESIGN-OPEN to support broader community adoption without licensing constraints.
Additionally, 23 tasks of ENGDESIGN incorporate images as part of the task input to LLMs.

2We provide token length comparison between ENGDESIGN and other QA benchmarks in Appendix D.1.



\: Domain: Control Design (XG_05)

a\ [ Evaluation Pipeline (with MATLAB)

In this task, you are required to design a feedback controller to regulate the temperature of a chemical
reactor using a heat exchanger system ...

Task 1

Your first task is to derive a first-order with delay transfer function G(s) = e ~%5/(1 + s) to model the
dynamics of the stirred tank ... Please determine the value of 8 and 7 from the step response figure using
the given information.

Task 2

Your second task is to design a feedback controller ... that satisfies the following requirements:

den, nargout=3)

def evaluate_llm_response(1lm_response):
# Start MATLAB engine

eng = matlab.engine.start_matlab()

# Get controller coefficients from LLM response

theta = llm_response.config.theta ..

den = llm_response.config.den

# Run MATLAB evaluation

passed, eval_details, score = eng.evaluate(theta, tau, num,

Controller Evaluation

return passed, eval_details, score

- Gain margin: >=7 dB
- Phase margin
- Settling time:

Liquid

=60 degrees ... Inflow function [passed, details, score] = evaluate(theta, tau,
=150 sec (for a step reference input) num, den)
l Performance check

%
Dynamic Response of the Heat Exchanger to a Step Input s = tf('s’)

12

is_stable = all(real(poles) < 0);
S = stepinfo(Tfb);

[Gm, Pm] = margin(Gp*C);

Gm_db = 20x10g10(Gm); % Convert to dB

% Compare against performance requirements
theta_check = abs(theta - desired_theta) <= 2;
phase_margin_check = (Pm > 60);

score
% Add evaluation results to details

Valve
Steam
Heat
Exchanger|

Stirring
Tank

Normalized Tank Temperature

100
Time (s)

[ Evaluation Pipeline (with SPICE Simulator)

( Domain: Analog IC-Design (TB_04)

def evaluate_llm_response(1llm_response):
# Load netlist from LLM response
netlist = llm_response.config.netlist
# Write netlist to file for evaluation
with open(netlist_path, "w") as fh:
fh.write(netlist)
# Run simulation and get evaluation results ..
ok, err = run_autograder(shell_path, "mp3")

You are asked to design a 5 transistor OTA topology and its bias current circuit in one netlist ... The

testbench is a unity-gain buffer connection (feedback from output vout to inverting input vin).

VDD = 14V,VSS = 0V.Outputload: CL = 2 pF capacitor at vout ...

Task: OTA Design

Pass Rule: All MOSFETs must instantiate exactly the foundry models

tsmc18dP (PMOS) and tsmc 18dN (NMOS). A Cadence/SPECTRE testbench (differential input OTA,
L = 2pF,VDD = 1.4V,VSS = 0V)willbe used to verify that your OTA design satisfies the

specifications list the the following table. ;assed - SPICE
score = Simulation
Spec Target return passed, details, score
DC differential-mode gain AVO > 40dB
#!/bin/bash
Unity-gain frequency fUGF > 50 MHz # Prompt user for MP number
o . echo "Enter the MP number (e.g., mpl, mp2, etc.):"
Common-mode rejection ratio CMRR > 80dB mp_number="${1:-mp3}"
Input common-mode range ICMR = 800mV * :D:S?g ;z;za:jtwg:gle

# Run Virtuoso

virtuoso -replay "$LOG_DIR/autograde.tcl"

# Wait for Virtuoso to complete

wait

# Find the latest CDS log file after Virtuoso runs
LATEST_LOG=$(1s ~t ~/CDS.logk 2>/dev/null | head -n 1)

ICMR pass rule: for VCM € {VSS, VDD}, each point
must achieve:

fUGF(VCM) = 50 MHz,

AV(VCM) = AVO — 3dB, and

CMRR(VCM) = CMRRO -3 dB, ...

<SPICE Template> ... </SPICE Template>

\: Domain: Structure Design (RK_03) g\ [ Evaluation Pipeline (with MATLAB)

You are given a square design domain bounded by the vertices (-1,-1), (1,-1), (1,1), and (-1, 1). A sharp

pre-crack is present in the domain, running vertically from the point (0,0) to (0, 1). Two horizontal loads of

magnitude 5 are applied at the top corners of the domain:

« Aload is applied at (-1,1) in the negative x-direction.

* Aloadis applied at (1,1) in the positive x-direction.

Solid material parameters are Young's modulus, E = 70000, and Poisson's ratio, nu = 0.3. Assume

density-based SIMP approach with relative void stiffness factor 1e-8.

The optimization setup includes ... Your task is to:

+ Design a structure within the domain that minimizes the maximum local stress while ensuring that
the volume fraction of material used does not exceed 0.25.

def evaluate_llm_response(llm_response):
# Start MATLAB engine
eng = matlab.engine.start_matlab()
# Load LLM response
vf = float(1lm_response.config.VF) ..
# Run MATLAB evaluation
y_hat, s_final, v_final = eng.TopOpt_SIMP(nargout=3)

eng.quit()
# Performance check and scoring \\ Topology

if vf <= v_final: . ) Optimization
return passed, eval_details, score

+ Once the optimization is complete, report the following numerical values:
- s_hat: the maximum stress in the optimized design.
- vf: the volume fraction of the structure, which must lie within the range [0,1].

function [passed, details, score] = TopOpt_SIMP()

%% Setup Optimization Problem ..

[Node, Element, Supp,Load] = Mesh_Crack(8000);

0 = 70e3; nu@ = 0.3; % Material Properties ..

m = @(y,B)MatIntFnc(y, ‘SIMP-H1", [p,B,etad]); % SIMP ..
fem = preComputations(fem); % Setup FEA ..

%% Run Optimization

[z,V,fem,c_hist,v_hist,s_hist] = Main_TO(fem,opt); ..

Design i von Mises stress Design i von Mises stress

Design i von Mises stress

v_final = v_hist(end); % volume fraction of design ..
200 =P -> s_final = s_hist(end)xopt.s_lim; % max. stress in
design ..

nel_x = int32((Lx/Ly)*sqrt(fem.NElem/(Lx/Ly)));

y_hat =
flipud(reshape(V,int32(fem.NElem/nel_x),nel_x)); % design
density values ..

\ Domain: Computer Architecture Design (DL_01) :g:g\ [ Evaluation Pipeline (with MQSim Simulator)

def evaluate_Lln_response(llm_response):
# Load ground truth obtained via MQSim simulation
+ ground_truth = json.load(open(ground_truth_file, "r"))

In this problem, you will finalize a set of Solid-State
Drive (SSD) designs that meet the performance
requirements for a specific workload type. Initially,

SATANVMe

# Check performance for each workload

SSD customers typically evaluate SSD ... If we want for workload in tuning_result.keys():

to get 20% performance improvement on I/O
throughput or ... Please provide your solution for
each workload mentioned below:

Real-world Workloads. These workloads represents
typical storage-intensive application patterns.

t determi hich ters to ¢ o H # Check performance for each workload
you must determine which parameters to tune, an H A passed, score, details = False, 0, {}
to what extent, to satisfy the given performance 5 @ [_ for i, workload_name in
criteria ... £ | mbedded [ memams > PR G enumerate(1lm_response. config.workload_names): MQSim
Task Description ] [ DRAM # Performance check for workload I simulation
3
o
2
2

# Scoring the LLM responses based on ground_truth
for name in tuning_result[workload]:

return passed, eval_details, score

i
A

Workload Category Description <execution paraneter. set> “LiveMapsBackEnd": {

Big Data Analytics Data center MapReduce workloads . ﬁ?éﬁgéﬂ%izﬁf?ﬁ&ﬁiiiﬁ "Da[ﬁacii;h;ggiﬁfny' I
Cloud Storage Data center cloud storage workloads. SSD Config files ]?oaLRgached,flag, e
WebSearch WebSearch services trace collected by UMass. l ] ' .

Advertisement Advertisement workloads running on servers. ¥ b Performance JSON

Figure 2: Selected demonstration tasks from ENGDESIGN.
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Table 1: Statistics of ENGDESIGN. Tokens are calculated with Tiktoken using 0200k _base encoding.

Engineering Area | # of tasks  # of gradable items # of query tokens

\ Max Min Avg
Operating System Design 8 66 2938 310 1103.25
Computer Arch Design 5 20 4385 2348 3539.60
Control Design 18 100 1361 209  634.44
Mechanical Systems 7 32 781 225  391.14
Structure Design 13 25 483 186  345.31
Digital Hardware Design 17 58 1715 206  515.65
Analog IC Design 5 23 2136 547 1196.6
Robotics 10 68 1485 192 771.9
Signal Processing 18 81 2304 151 611.72
Overall \ 101 473 4385 151  778.71

2.1 Task Structure

Each task of ENGDESIGN consists of the following four key components:

1. Task Description. This part is the query prompt fed into the LLMs, offering a clear and detailed
definition of the engineering design problem, including design objectives, specifications, constraints.

2. Evaluation Rubrics. Given the complexity of ENGDESIGN tasks, each task is further decomposed
into multiple gradable items evaluated individually during the performance check stage. The evalua-
tion rubrics define the assessment criteria and scoring metrics, with a full score of 100. This enables
models to receive partial credit even if the design does not fully meet all specified requirements.

3. Evaluation Pipeline. Each task includes automated evaluation scripts that assess the LLMs’
designs. The evaluation returns a binary pass/fail indicator, a numerical score, and evaluation logs for
further analysis.

4. Reference Design. Each task provides a validated reference design that fully satisfies all specified
requirements, ensuring the feasibility and realism of the design challenge.

Figure 2 shows four demonstrated design examples from ENGDESIGN including task descriptions
and evaluation pipelines.

2.2 Evaluation Pipeline

Unlike conventional benchmarks, which often have a single golden answer that allows evaluation
through exact string matching or LLLM-as-judge scoring, our engineering design tasks inherently
lack a unique golden design. For example, there are infinitely many valid controller designs that
can regulate the temperature of a stirred tank modeled by a first-order system while satisfying
both time-domain and frequency-domain performance requirements. To address this challenge,
our benchmark introduces a simulation-based evaluation pipeline. Specifically, for each LLM-
generated design, we first parse the key design components from the response automatically (such
as code snippets, key parameters, etc.). These components are then fed into our evaluation pipeline,
which runs domain-specific simulations to assess the design’s performance against the specified task
requirements. Guided by a per-task rubric table, the evaluation pipeline outputs three key results: a
binary pass/fail indicator, a numerical score between 0 and 100, and a detailed log that records the
evaluation process for further analysis. Below we discuss each step in detail.

Structured Responses from LLMs. To constrain the output format for a wide range of LLMs and
ensure compatibility with our evaluation pipeline, we adopt the popular open-source Python library
instructor [22], which is built on top of Pydantic and facilitates structured LLM responses. By
defining schema templates that specify expected fields, such as design parameters or code snippets,
the instructor package enables LLMs to produce outputs in a pre-defined format. We provide an
example at Figure 10 in Appendix E.2. Specifically, LLMs are instructed to construct their responses
into two main parts: (1) a reasoning field, which contains the step-by-step reasoning process for
solving the task, and (2) a ConfigFile class, which summarizes the final design results, including
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Initial Task Design First-Round Review

Engineering Domain LLM Filtering & Pre-test Task Clarity

Task Description Validate Rubrics
Rubrics Design * TestEvaluation Code
Evaluation Codebase *  Verify Reference Design

Reference Design

Refinement

Analysis Feedback
Second-Round Review
Done by domain experts
LLM Query & «  Check sensibility of approved tasks
Evaluation Final Benchmark | «  Provide domain-specific refinements

Figure 3: An overview of the construction process of ENGDESIGN, illustrating stages from initial
task design, LLM filtering, and expert review to final benchmark integration, with iterative refinement
and evaluation.

their design choices or code snippets. During evaluation, the fields defined in ConfigFile can be
automatically parsed to trigger the simulation-based evaluation pipeline.

Task-Specific Evaluation Pipeline. A simulation-based evaluation pipeline was designed for each
task. For example, control engineering tasks may evaluate closed-loop dynamics through metrics such
as rise time, settling time, overshoot, and phase/gain margins via MATLAB. The evaluation pipeline
outputs three key results: (1) a binary pass/fail indicator for meeting all performance requirements,
(2) a numerical score (0-100) reflecting fine-grained performance analysis, and (3) an evaluation log
capturing simulation outputs, performance metrics, or error messages.

2.3 Construction of ENGDESIGN

The construction of ENGDESIGN follows a multi-stage process that integrates both automated
validation and human expertise as shown in Figure 3:

1. Initial Task Design. We recruited graduate students and researchers from various engineer-
ing disciplines to contribute initial task proposals, drawing on open-source resources and
their domain knowledge. Contributors were guided to follow a standardized submission
format, which includes a task description, evaluation rubric, executable evaluation codebase,
and a reference solution.

2. LLM Filtering and Pre-Test. Submitted tasks undergo an initial filtering phase using a
language model (04-mini) to assess prompt sufficiency and the functionality of the evaluation
code. Specifically, we prompt the LLM to classify the task’s engineering domain and
determine whether the information provided is adequate to solve the problem. If the model
flags missing or unclear details, we work with the original contributor to address those gaps.

3. First-Round Review. Tasks that pass the pre-test enter a first-round review involving close
collaboration between reviewers and the original authors. The review ensures that:

* The task description is clear, self-contained, and complete.

* The evaluation rubric is well-defined with partial credit, and aligns with the task goals.

» The evaluation codebase is executable, robust, and handles typical edge cases.

* The reference design meets all performance requirements, validating the task feasibility.
Based on this review, tasks fall into one of three categories: Accept: the task meets
all requirements and proceeds to expert review; Revise: minor issues are identified and

addressed in collaboration with the contributor; or Reject: the task is excluded due to critical
issues such as unfeasibility, triviality, or misalignment with design-oriented evaluation.

4. Second-Round Review with Domain Experts. Tasks accepted in the first round are
reviewed by faculty experts in the corresponding engineering domain. These experts assess
the technical soundness and relevance of each task to ensure it serves as a meaningful
evaluation of LLMs in realistic design settings.

5. Final Integration. Tasks that pass both review stages are standardized to match the bench-
mark’s formatting and structural guidelines, and are formally included in the ENGDESIGN.
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Table 2: Average pass rate (%) results (each task evaluated over 3 trials). * Model is not multi-
modal and was evaluated only on the text-only subset. We report text-only results for all models in
Appendix E.4. The domain abbreviations are: AICD = Analog Integrated Circuit Design, Arch =
Computer Architecture Design, Ctrl = Control Design, DHD = Digital Hardware Design, Mech =
Mechanical Systems, OS = Operating System Design, Robo = Robotics, SigP = Signal Processing,
Stru = Structure Design. The best results for each column are highlighted in bold.

Model Overall AICD Arch Ctrli DHD Mech 0S Robo SigP  Stru
Chat Models

GPT-40 15.68 0.00 20.00 1852 1026 0.00 4.17 26.67 17.65 25.64

DeepSeek-v3* 17.92 0.00 0.00 27.27 25.64 0.00 0.00 16.67 12.82 38.89

Gemini-2.0-Flash 14.16 0.00 0.00 15.15 16.67 4.76 0.00 20.00 5.13 36.11

Claude-3.7-Sonnet 22.61 0.00 40.00 16.67 3333 1429 0.00 3333 21.57 30.77

Reasoning Models

ol 29.17 0.00  40.00 24.07 41.03 1429 37.50 50.00 2549 23.08
03 34.38 0.00 40.00 3519 20.51 2381 25.00 6333 41.18 30.77
03-high 33.57 0.00 40.00 27.78 20.51 28.57 3043 6897 3529 41.03
04-mini 31.60 0.00 3333 24.07 41.03 19.05 29.17 4333 3333 41.03
04-mini-high 34.04 0.00  40.00 27.78 47.22 19.05 37.50 46.67 3529 35.90
Gemini-2.5-Pro 29.54 0.00 0.00 3333 4359 000 952 56.67 12.82 50.00
DeepSeek-R1* 25.53 0.00 3636 3636 3846 476 526 26.67 20.51 41.67

Claude-3.7-Thinking ~ 20.07 0.00 3333 1852 1795 952 0.00 40.00 19.61 28.21

3 Experiments

We evaluate a set of representative LLMs on the ENGDESIGN and analyze their performance.

Evaluated LLMs. For chat models, we include GPT-40, Claude-3.7-Sonnet, Gemini-2.0-Flash,
and DeepSeek-v3. For reasoning models, we evaluate ol, 03, 03-high, 04-mini, 04-mini-high,
Claude-3.7-Thinking, DeepSeek-R1, and Gemini-2.5-Pro.

Evaluation Metrics. We report three primary evaluation metrics: (1) Average Pass Rate, (2)
Average Score, and (3) Reasoning Robustness. Each task is evaluated over three independent trials
per model. To measure reasoning robustness, we compute the ratio between the number of tasks
where all three trials passed and the number of tasks where at least one trial passed. This ratio, which
ranges from 0 to 1, serves as a straightforward indicator of an LLM’s reasoning consistency. A value
closer to 1 indicates higher robustness and more stable reasoning behavior across repeated runs.
Formal definitions of all evaluation metrics are provided in Appendix E.3.

3.1 Main Results

Table 2 presents the average pass rates and average score across evaluated LLMs, across 9 distinct
engineering design areas. The average score demonstrates a strong correlation with the pass rate,
which we provided the detailed results in Appendix E.4. We make the following key observations.

ENGDESIGN presents a highly challenging benchmark, with even the best-performing models
achieving only modest pass rate. As shown in Table 2, no model surpasses a 35% overall pass rate.
The top-performing model, 03, achieves 34.38%, while widely-used chat models such as GPT-40
and Gemini-2.0-Flash attain around 15%. Analog IC design tasks stands as the most difficult ones
where all the models got 0% pass rate. These results highlight the difficulty of the benchmark, which
stems from its requirements for domain-specific expertise, multi-step reasoning, and design trade-off
considerations, capabilities that go beyond the strengths of current LLMs.

Reasoning models outperform general-purpose chat models. Models designed with enhanced
reasoning capabilities, including 03, o4-mini, and DeepSeek-R1, consistently outperform general-
purpose chat models across most engineering domains. However, this trend does not hold for Claude
models, where both Claude-3.7-Sonnet and Claude-3.7-Thinking exhibit similar pass rates despite
their differences in reasoning emphasis.

Reasoning Models are more robust in general. Figure 4 shows the reasoning robustness of all
evaluated models. Reasoning-focused models such as ol, 03, and o4-mini-high achieve the highest
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Figure 4: Reasoning robustness distribution of evaluated LLMs on ENGDESIGN.

robustness scores (0.62, 0.61, and 0.57, respectively), indicating strong consistency across repeated
trials on tasks they are capable of solving. In contrast, chat-oriented models like Gemini-2.0-flash and
DeepSeek-v3 exhibit substantially lower robustness (0.20 and 0.35), reflecting less stable reasoning
behavior. Notably, the gap in reasoning robustness between top-performing reasoning models and
weaker chat models is more pronounced than in average pass rate as shown in Table 2—up to a
3x performance difference in robustness compared to a 2x difference in pass rate. This highlights
robustness as a distinguishing strength of reasoning models.

Token Consumption. Reasoning models require substantially more compute due to longer inference
time. We analyze the number of completion tokens generated across different models. As shown
in Figure 5, the reasoning model (01) produces significantly more tokens than the non-reasoning
model (GPT-40) to achieve performance gains. Optimizing the latency—performance trade-off will be
essential for making future models more accessible and deployable in real-world engineering design
scenarios. Additional results are provided in Appendix E.5.
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Figure 5: Average token consumption of evaluated LLMs on ENGDESIGN.

3.2 Iterative Design

To emulate the workflow of human engineers, we implement an iterative design protocol that allows
LLMs to refine their solutions based on feedback from previous attempts. In our implementation,
the LLM is provided with its previous design output along with corresponding evaluation results,
such as scores, performance metrics, and diagnostic logs, and is then prompted to generate an
improved design in the subsequent iteration. As shown in the left plot of Figure 6, model performance
consistently improves with additional iterations. Notably, 03 achieves almost a 60% pass rate after ten
iterations.”. However, we also observed that iterative design does not help in all cases. For example,
in Analog IC design tasks, models still fail to meet the requirements even after ten iterations.

3Due to time and resource constraints, the iterative design protocol was applied to a selected subset (71 tasks)
of ENGDESIGN tasks using four representative models: GPT-40, o1, 03, and 04-mini. As a result, reported pass
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3.3 Failure Analysis

To better understand the limitations of LLMs in engineering design tasks, we define five primary
error categories observed in ENGDESIGN: Domain Knowledge Error, Constraint Violation Error,
Prior Knowledge Overreliance, Hallucination, and Computation Error. Formal definitions of
these error types are provided in Appendix F.

We analyzed o4-mini’s responses to 70 tasks from ENGDESIGN in which the model failed evaluation,
and manually annotated each failure with corresponding error types. Given the complexity of
engineering design tasks, many responses exhibited multiple failure modes; we therefore allowed
multi-label assignments per task. In total, 111 distinct errors were identified. The right plot of
Figure 6 summarizes the distribution of error types. Domain knowledge errors (33.3%), constraint
violations (25.2%), and prior knowledge overreliance (18.8%) collectively account for over 75% of
all observed failures. This suggests that o4-mini frequently struggles with applying domain-specific
principles, satisfying task-specific constraints, and generalizing beyond memorized patterns. While
hallucinations (12.6%) remain a concern, computation errors (9.0%) are less common, indicating
relatively strong arithmetic and symbolic reasoning capabilities. Additional examples and qualitative
insights are provided in Appendix F.

4 Related Work

Our work relates to the broader field of benchmark design for LLMs, particularly those developed
to evaluate general reasoning and problem-solving capabilities [23, 9, 24, 25, 12, §, 10, 26, 27].
ENGDESIGN also contributes to a growing body of research focused on evaluating LLMs in spe-
cific engineering domains [15, 28, 29, 30]. Due to space constraints, additional related work is
discussed in Appendix C. Compared to prior work, ENGDESIGN spans multiple engineering domains
and introduces a novel evaluation framework that combines generative outputs from LLMs with
simulation-based evaluation to assess performance in realistic design settings.

5 Conclusion

In this work, we introduced ENGDESIGN, a novel benchmark for rigorously evaluating the capabilities
of LLMs in realistic, multi-domain engineering design scenarios. Our results show that ENGDESIGN
presents a substantial challenge, even the strongest models achieve only modest performance, under-
scoring the complexity of real-world engineering tasks. We hope ENGDESIGN serves as a valuable
benchmark for future research at the intersection of language models and engineering intelligence,
motivating continued progress toward the development of general-purpose Al engineers.

rates in the iterative experiments are slightly lower than the ones report in Table 2. Nonetheless, this subset
demonstrates the effectiveness of feedback-driven refinement and highlights the potential of LLMs to improve
design quality through iterative design.
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B Limitations and Broader Impact

Limitations

While ENGDESIGN provides a comprehensive benchmark for evaluating LLMs in engineering design
tasks, some limitations remain:

1.

3.

ENGDESIGN currently covers 9 engineering design domains. Although these are diverse
and representative, the benchmark does not yet encompass the full breadth of engineering
disciplines or subfields.

. Our evaluation includes a selection of widely used and high-performing LLMs. However, it

is not exhaustive. Many emerging or smaller-scale models are not included in our evaluation.

We employ the instructor framework to enforce structured output from LLMs. While
this tool has shown reliable performance throughout our evaluations, there are instances
where LLMs fail to adhere to the expected output format. As instructor is still under
active development, future improvements will be necessary to further enhance its robustness
and compatibility across models.

Broader Impact

This work aims to advance our understanding of how LLMs perform in complex, real-world engi-
neering design scenarios. However, we highlight the following considerations:

Not a replacement for human engineers. Our benchmark is intended to assess LLM
capabilities, not to replace the expertise and judgment of professional engineers. Engineering
design involves safety-critical decision-making, physical prototyping, and domain-specific
knowledge that current LLMs cannot fully replicate.

Supporting real-world design workflows. We hope that LLMs, when properly evaluated
and deployed, can assist engineers by automating routine tasks, enhancing ideation, and
accelerating early-stage design processes—particularly in settings with limited access to
expert resources.

Need for rigorous safety checks. Any LLM-generated design, particularly those intended
for deployment in safety-critical domains such as aerospace, biomedical devices, civil infras-
tructure, or autonomous systems, must undergo thorough validation and safety assessment
by qualified human experts before real-world application.

Ethical use and accessibility. Care must be taken to ensure that advances in Al-assisted
engineering design benefit a broad and diverse community. Efforts should be made to avoid
misuse, bias amplification, or overreliance on unverified outputs.
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C More on Related Work

Large Language Models. Recent advances in large language models (LLMs) have been driven
by scaling, instruction tuning, and improvements in reasoning. Models such as GPT-3 and GPT-
4 [31, 32] have demonstrated strong general capabilities. Proprietary models including Anthropic’s
Claude [33], Google’s Gemini [34], and DeepSeek [35] show competitive results across a wide range
of benchmarks.

Recent research has focused on enhancing the reasoning capabilities of LLMs through architectural
innovations, training paradigms, and inference-time prompting strategies. Techniques such as Chain-
of-Thought prompting [36] and least-to-most prompting [37] have demonstrated that reasoning
performance can be significantly improved through intermediate step decomposition. These advances
have led to the development of a new generation of reasoning-focused models, including the o-series
from OpenAl [38], Claude models with "thinking" mode [39], Gemini 2.5 Pro [40], and DeepSeek-
R1 [41], all of which achieve strong results on standard benchmarks. However, their effectiveness
in domain-specific applications, such as engineering design, remains underexplored. ENGDESIGN
addresses this gap by evaluating both general-purpose and reasoning-specialized LLMs in realistic,
simulation-based engineering workflows.

General Purpose Benchmarks for LLMs. Numerous benchmarks have been developed to eval-
uate the general reasoning and problem-solving capabilities of LLMs. Notable examples include
MMLU [23] and MMLU-Pro [9], which assess knowledge across a wide range of subjects; GAIA [24],
which focuses on long-context retrieval and reasoning; and HLE [25], which introduces highly chal-
lenging questions spanning diverse domains. HumanEval [12] evaluates the functional correctness
of LLM-generated code, while GPQA [8] targets graduate-level physics and science problems.
GSMS8k [26] emphasizes grade-school math word problems to test arithmetic and reasoning. More
recently, DynaMath [11] proposes a dynamic visual math benchmark that evaluates LLM robust-
ness across varied visual and numeric transformations, and PaperBench [27] offers paper-based
reproduction tasks to assess complex agentic workflows.

LLMs in Engineering and Scientific Domains. Recent studies have started to explore the ap-
plicability of LLMs to engineering contexts. For example, [28, 15, 42, 43, 44, 45, 46] evaluate
LLMs across engineering subfields using curated QA datasets. However, these efforts only focuses
one specific domain or largely focus on factual recall rather than generative design capabilities.
Several domain-specific studies examine LLM-assisted design workflows. For example, Control A-
gent [29] integrates control theory solvers for automated controller design, while AnalogCoder [30]
and SPICED [47] target analog circuit and SoC design using prompt engineering and retrieval-based
techniques. Retrieval-augmented and programmatic strategies have also been explored to enhance
LLM performance [48, 49]. Other studies examine LLMs in mechanical design [50], cross-domain
creativity [51], and computational engineering [52, 53, 54, 55].

D More on ENGDESIGN

D.1 Prompt Token Length Comparison

Table 3 reports the average number of tokens in the input prompts for various benchmarks, measured
using the 0200k_base tokenizer. Notably, ENGDESIGN exhibits significantly longer prompts
(averaging 778.71 tokens) compared to other popular QA-style benchmarks such as MMLU-Pro
(61.76), HLE (250.03), and GSM8K (58.46). This reflects the greater contextual and structural
complexity involved in realistic engineering design tasks, which often require extensive problem
descriptions and domain-specific constraints.

Table 3: Average token counts across different benchmarks using the 0200k _base tokenizer.
Benchmark MMLU-Pro HLE SuperGPQA DynaMATH GSMS8K EngDesign

Average Token # 61.76 250.03 57.89 27.83 58.46 778.71
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D.2 More on construction of ENGDESIGN

As described in Section 2.3, the development of ENGDESIGN follows a rigorous multi-stage process,
including initial task design and two rounds of review to ensure task quality and relevance. During
the initial stage, over 40 task contributors submitted a total of 186 task proposals. Following thorough
evaluation and revision across the two review phases, 101 tasks were accepted for inclusion in
ENGDESIGN, while the remaining 85 were discarded due to various issues such as insufficient clarity,
infeasibility, or misalignment with the benchmark’s design-oriented goals.

D.3 Word Clouds of ENGDESIGN

Figure 7 and Figure 8 present the word clouds of the most frequently occurring terms across all
prompts and within each domain, respectively. These visualizations underscore the benchmark’s
emphasis on design-specific vocabulary and highlight the diversity of engineering contexts it encom-
passes.
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Figure 7: Word Cloud of the overall ENGDESIGN Prompts.
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E More on Evaluation

Figure 9 illustrates the benchmarking pipeline for evaluating LLMs on engineering design tasks. In
this section, we provide more details on the evalutions of ENGDESIGN.

E.1 Detailed Experimental Setup

We use the default configuration for each LLM during evaluation. Table 4 provides detailed informa-
tion on the model names, setup parameters, and special configurations used for each model.

All evaluations in this work were conducted via API access to proprietary LLMs (e.g., OpenAl,
Anthropic, Google, and DeepSeek). As a result, the computational burden on our end was minimal,
with no need for local GPU infrastructure. The primary cost was associated with inference-time API
usage, which varies depending on the model types and token numbers. Since we did not perform
model training or fine-tuning, the overall computational footprint of our study remains low.

E.2 LLM Response Structure

As discussed in Section 2.2, we use instructor to construct LLM responses by defining a response
structure class, as illustrated in Figure 10. For each task, the response structure class includes two
keys: reasoning and config. The reasoning component prompts the LLM to perform a detailed
step-by-step reasoning process to complete the task. The config component defines a task-specific
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Figure 9: Overview of the ENGDESIGN Benchmarking Pipeline. The process begins with a task
description curated by task contributors (Step 1). This prompt is then submitted to various LLMs (e.g.,
GPT, Claude, Gemini, DeepSeek) to generate candidate design proposals (Step 2). The generated
outputs are evaluated using an automated codebase that includes code execution, integration with
scientific software (e.g., MATLAB, Webots), and standardized scoring rubrics (Step 3). Finally, the
results, including pass/fail status, quantitative scores, and detailed evaluation logs, are recorded for
further analysis (Step 4).

Table 4: Model names and configuration details for each evaluated LLM.
Model | Model Pointer & Setup

GPT-40 gpt-40-2024-08-06

ol 01-2024-12-17

03 03-2025-04-16, reasoning effort: medium/high
04-mini 04-mini-2025-04-16, reasoning effort: medium/high

Claude-3.7-Sonnet | claude-3-7-sonnet-20250219
Claude-3.7-Thinking | claude-3-7-sonnet-20250219, thinking token budget: 16,000

Gemini-2.0-Flash
Gemini-2.5-Pro
DeepSeek-v3
DeepSeek-R1

gemini-1.5-pro

gemini-2.5-pro-preview-03-25

DeepSeek-V3
DeepSeek-R1

ConfigFile class, which guides the LLM to produce key design components in a predefined format.
This structured output facilitates automated evaluation by making it easy to parse LLMs’ design
choices or code snippets.

E.3 More on Evaluation Metrics

We evaluate model performance using three metrics: Average Pass Rate, Average Score, and Average
Response Length. Each task is tested over N (N = 3) independent trials per model. For each metric,
we aggregate at the task level and then summarize across all tasks to ensure equal weighting.

Average Pass Rate For each task ¢, we define the pass rate as:

number of successful trials
N

The overall pass rate is then computed as the mean of per-task pass rates:

pass_rate; =

N

1
Hpass = N z_:l pass_rate,
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import instructor
from pydantic import BaseModel, Field

class ConfigFile(BaseModel):

theta: float = Field(description="The value of theta")

tau: float = Field(description="The value of tau")

num: list[float] = Field(description="The numerator of the transfer function of the
controller")

den: list[float] = Field(description="The denominator of the transfer function of the
controller")

# Define your desired output structure
class Response_structure(BaseModel):

reasoning: str = Field(..., description="Detailed reasoning process to accomplish the
task, please solve all the tasks step by step")

config: ConfigFile

Figure 10: An example of response structure class for instructor (Task XG_05).

742 We Teport pipass along with its standard deviation across tasks:

1 N

Tpass =\ | 1 Z(pass_ratei — Hpass)?

=1

743 Average Score For each task i, the score is averaged over [V trials:

3
1
SCore; = N E Xi,5
Jj=1

744 where x; ; is the score in trial j. The overall score is the mean of per-task scores:

N
1
Hscore = 77 E SCOre;
N
i=1

745 with corresponding standard deviation:

1 N

Oscore = N_1 g (scorei - llfscore)2

=1

746 Reasoning Robustness Let 7" denote the set of all evaluated tasks. For a given model, each task
747t € T is evaluated over N independent trials. Define:
748 * N, the number of tasks for which all [V trials passed, and

749 * Nuny: the number of tasks for which at least one trial passed.

750 Then, the Reasoning Robustness R € [0, 1] is defined as:

Nan

R =
Nany

751 This metric quantifies the model’s consistency in reasoning. A value of R = 1 indicates perfect
752 robustness. In other words, whenever a task is solvable by the model, it succeeds consistently across
753 all trials. On the other hand, lower values indicate higher variance or instability in the model’s
754 reasoning process across repeated attempts.
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Figure 11: Average Score of evaluted LLMs on ENGDESIGN.

Table 5: Average score results (each task evaluated over 3 trials) under different domains.

Model Overall AICD Arch Ctrli DHD Mech 0OS Robo SigP  Stru
Chat Models

GPT-40 36.74 2571 18.15 3530 41.69 29.05 26.33 55.80 4145 34.60

DeepSeek-v3* 35.97 1733  0.00 4558 39.67 24.05 2594 4847 3455 38.68

Gemini-2.0-Flash 33.59 7.00 0.00 3945 38.25 27.14 28.15 5347 30.03 31.51

Claude-3.7-Sonnet 41.14  31.00 23779 4394 46.03 30.24 29.55 5897 4490 37.11

Reasoning Models

ol 48.52 19.00 49.09 4748 6328 4048 5835 5722 52.61 3257
03 48.98 2033 3582 59.37 28.82 40.24 5452 70.13 57.44 4477
03-high 49.46 20.33 3280 53.19 3336 4524 65.59 73.67 53.51 47.48
04-mini 47.30 11.00 2572 48.80 5736 35.00 5690 6138 5128 42.07
04-mini-high 49.88 12.67 3697 5487 6428 3643 6396 5672 4845 44.15
Gemini-2.5-Pro 48.25 31.00 0.00 53.70 58.05 29.05 44.05 6243 39.63 55.02
DeepSeek-R1* 44.71 22.00 0.00 5627 5438 26.19 37.26 53.82 48.08 40.31

Claude-3.7-Thinking ~ 39.75 22.67 26.02 43.87 2959 37.62 2825 59.38 4558 40.39

E.4 Additional Evaluation Results

In this section, we present additional evaluation results. Table 5 provide the average score results of
evaluated LLMs on ENGDESIGN.

Figure 11 presents the average score distribution across all evaluated models. The overall ranking is
consistent with the pass rate results in Table 2, with reasoning-focused models such as 04-mini-high,
03-high, and 03 achieving the highest scores. Notably, the score differences are less pronounced than
the corresponding differences in pass rates, suggesting that while these models may not consistently
meet strict pass criteria, they still generate partially correct or near-complete solutions that earn
substantial credit. In addition, Table 6 and Table 7 show the average pass and score for text-only
tasks. Table 8 and Table 9 present the evaluation results for ENGDESIGN-OPEN. Finally, we provide
the results with error bar in Table 10 and Table 11.

E.5 Token Consumption

Figure 12 to Figure 15 show the token consumption for the evaluated LLMs under 9 topics within
ENGDESIGN.

E.6 Prompt

In this section, we provide the LLMs prompts we used for task filtering (the second stage of
ENGDESIGN Section 2.3) and iterative design (Section 3.2).
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Table 6: Average pass rate (%) results (text-only tasks).

Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru
Chat Models

GPT-40 14.98 0.00 20.00 20.83 1026 0.00 4.17 26.67 16.67 27.78

DeepSeek-v3* 18.42 0.00 0.00 3333 2564 0.00 0.00 16.67 13.89 38.89

Gemini-2.0-Flash 13.12 0.00 0.00 417 16.67 476 0.00 20.00 556 36.11

Claude-3.7-Sonnet 21.97 0.00 40.00 2500 3333 1429 0.00 3333 13.89 33.33

Reasoning Models

ol 28.95 0.00 40.00 2500 41.03 1429 37.50 50.00 2222 25.00
03 34.38 0.00 40.00 2051 20.51 23.81 25.00 6333 41.67 41.67
03-high 34.51 0.00 40.00 3333 20.51 28.57 3043 6897 36.11 4444
04-mini 31.58 0.00 3333 2083 41.03 19.05 29.17 4333 30.56 44.44
04-mini-high 33.78 0.00 40.00 20.83 47.22 19.05 37.50 46.67 36.11 38.89
Gemini-2.5-Pro 28.89 0.00 0.00 2500 4359 000 952 56.67 13.89 50.00
DeepSeek-R1* 23.77 0.00 3636 20.83 3846 476 526 26.67 2222 41.67

Claude-3.7-Thinking 18.30 0.00 3333 2083 1795 952 0.00 40.00 11.11 30.56

Table 7: Average score results (text-only results).

Model Overall AICD Arch Ctrl DHD Mech 0S Robo SigP  Stru
Chat Models

GPT-40 37.57 25771 0.00 4375 41.69 29.05 2633 5580 36.59 3498

DeepSeek-v3* 37.20 17.33  0.00 60.17 39.67 24.05 2594 4847 3493 38.68

Gemini-2.0-Flash 33.87 7.00 0.00 4258 3825 27.14 28.15 5347 30.86 31.51

Claude-3.7-Sonnet 41.39 31.00 0.00 48.54 46.03 3024 2955 5897 4254 37.70

Reasoning Models

ol 48.94 19.00 0.00 5392 6328 4048 5835 5722 5459 3279
03 48.02 2033  0.00 60.58 2882 4024 5452 70.13 59.76 46.00
03-high 50.39 2033  0.00 58.08 3336 4524 6559 73.67 5644 48.93
04-mini 48.18 11.00  0.00 50.04 5736 3500 5690 6138 5246 43.08
04-mini-high 49.76 12.67 0.00 4996 6428 3643 63.96 56.72 51.65 4530
Gemini-2.5-Pro 48.33 31.00 0.00 5050 58.05 29.05 44.05 6243 4293 55.02
DeepSeek-R1* 44.24 2200 0.00 5321 5438 26.19 3726 53.82 5042 40.31

Claude-3.7-Thinking ~ 39.47 2267 000 4771 2959 37.62 2825 5938 4392 41.25

Table 8: Average pass rate (%) results for ENGDESIGN-OPEN.

Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP  Stru
Chat Models

GPT-40 14.74 N/A 20.00 16.67 11.11 0.00 4.17 29.63 20.00 0.00

DeepSeek-v3* 8.94 N/A 0.00 N/A 1481 0.00 0.00 1852 833 N/A

Gemini-2.0-Flash 10.34 N/A 0.00 0.00 1250 5.56 0.00 2222 833 0.00

Claude-3.7-Sonnet 22.52 N/A  40.00 833 29.17 16.67 0.00 37.04 23-.33 0:00

Reasoning Models

ol 36.54 N/A  40.00 0.00 4815 16.67 37.50 5556 36.67 0.00
03 35.90 N/A  40.00 0.00 741 2778 25.00 70.37 60.00 0.00
03-high 36.77 N/A  40.00 0.00 11.11 3333 3043 74.07 50.00 0.00
04-mini 36.54 N/A 3333 000 4815 2222 2917 48.15 50.00 0.00
04-mini-high 40.52 N/A  40.00 0.00 5833 2222 37.50 51.85 50.00 0.00
Gemini-2.5-Pro 30.00 N/A 0.00 0.00 4444 000 952 6296 20.83 0.00
DeepSeek-R1* 22.03 N/A 000 N/A 4444 556 526 29.63 16.67 N/A

Claude-3.7-Thinking ~ 19.74 N/A 3333 000 741 11.11 0.00 4444 30.00 0.00
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Table 9: Average score results for ENGDESIGN-OPEN.

Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru
Chat Models

GPT-4o 36.03 N/A  18.15 47.00 2685 29.44 2633 62.00 37.79 30.00

DeepSeek-v3* 31.50 N/A 0.00 N/A 2037 28.06 2594 5385 3094 N/A

Gemini-2.0-Flash 34.74 N/A 0.00 3500 17.50 31.67 28.15 59.41 36.36 30.00

Claude-3.7-Sonnet 38.71 N/A 23779 46.00 29.17 3528 29.55 6552 3641 30.00

Reasoning Models

ol 51.64 N/A  49.09 42.67 57.04 3500 5835 63.57 47.70 30.00
03 47.48 N/A 3582 4133 741 4139 5452 7793 64.18 30.00
03-high 49.61 N/A 3280 4717 1333 4500 6559 7913 5754 30.00
04-mini 52.08 N/A 2572 4717 5037 40.83 5690 68.20 59.37 30.00
04-mini-high 54.02 N/A 3697 4633 59.58 4250 6396 63.02 5446 30.00
Gemini-2.5-Pro 47.88 N/A 0.00 46.00 47.78 30.56 44.05 69.37 46.13 30.00
DeepSeek-R1* 45.66 N/A 0.00 N/A 48.15 30.56 37.26 59.80 50.62 N/A

Claude-3.7-Thinking ~ 34.74 N/A 2602 37.67 741 3500 2825 6598 39.07 30.00

Average Completion Tokens

Average Completion Tokens
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Figure 12: Average token consumption of Claude models on ENGDESIGN.
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Figure 13: Average token consumption of Gemini models on ENGDESIGN.
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Figure 14: Average token consumption of DeepSeek models on ENGDESIGN.
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Figure 15: Average token consumption of OpenAl models on ENGDESIGN.

LLM Prompt for Initial Filtering (04-mini)

Please review the following engineering design task description and provide:

Engineering Domain: Identify the overarching engineering field. Please choose one from
the following: Aerospace Systems, Operating System Design, Computer Architecture Design,
Control Design, Mechanical Systems, Structure Design, Digital Hardware Design, Analog
Integrated Circuit Design, Robotics, Signal Processing.

Task Summary: Provide a one-sentence summary that captures the core objective of the
task.

Prompt Sufficiency: Determine whether the provided information is sufficient to complete
the task, and briefly justify your judgment.

Here is the task description: {task description}.

Please format your response in JSON with the following keys: "Engineering Domain",
"Task Summary", "Yes or No for Prompt Sufficiency", and "Explanation for

Sufficiency".
772

LLM Prompt for Iterative Design

Task Description: {original task description}
773
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774

775

776
777

778
779

780
781

784

790

Previous Responses: {previous responses}
Evaluation Feedback: {previous evaluation results}

Please review the feedback above and propose an improved solution based on the evaluation
results.

F More on Failure Analysis

To better understand the limitations of LLMs in engineering design tasks, we define five primary
error types observed in ENGDESIGN:

1. Domain Knowledge Error. The model lacks essential engineering knowledge required to
interpret or solve the task correctly.

2. Constraint Violation Error. The model generates designs that violate explicitly stated
constraints, such as structural limits, performance bounds, or budgetary requirements.

3. Prior Knowledge Overreliance. The model applies memorized patterns or textbook solu-
tions without adapting them to the specific requirements of the task, resulting in suboptimal
or invalid outputs.

4. Hallucination. The model fabricates content—such as equations, parameters, or de-
signs—that is unsupported by the task description or domain knowledge.

5. Computation Error. The model performs arithmetic or symbolic computations incorrectly
despite correct methodological reasoning.

Below, we present examples of LLM failures along with detailed analyses of their underlying causes.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error

Task_id
XG_12

Topic
Control Design

Task Description.
Consider the following plant with a resonance:

0.5 169
Gl) = 702657 169"

This plant has a resonance around 13 rad/sec. Assuming the desired loop bandwidth is
wy, = 3 rad/sec. An initial loop shaping controller using controller gain and integral boost is

given as: - gain: K, = m, - integral boost: K;(s) = f\’j% with 8, = v/10. And

the initial loop shaping controller is:
C(s) = Kq4- Ki(s)

Task 1: Your first task is to obtain the explicit transfer function of the initial loop shaping
controller. Please provide the complete transfer function of C'(s) as part of your response in
the form of numerator and denominator coefficients.

Task 2: ...

LLM Response (04-mini)

Step 1: Compute |G(jwz)| at wy, = 3 rad/sec for G(s) = %2189 o Ats = j3,

$2 40265 + 169 = —9 + 5 - 0.78 + 169 = 160 + j0.78, |160 + 50.78| ~ 160.0. Then
|G(53)] = 84.5/(3 - 160) = 84.5/480 ~ 0.176. Hence controller gain K, = 1/0.176 ~
5.68.
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791

792

Step 2: Form the integral boost K;(s) = (Bys + wr)/(s - /(8% + 1)), with 8, = V10 ~
3.1623, /(B2 + 1) = V11 ~ 3.3166,w, = 3. K;(s) = (3.1623s + 3)/(3.3166s).

Step 3: C(s) = Ky - K;(s) = 5.68 - (3.1623s + 3)/(3.31665s). Multiply out numerator:
[5.68 - 3.1623,5.68 - 3] ~ [17.96,17.04]; denominator [3.3166,0]. Normalize by dividing
numerator and denominator by 3.3166 to get a monic s-term in the denominator: C(s) =
(5.414s + 5.137) /s, so coefficients: C_num=[5.414,5.137], C_den=[1,0].

Analysis

For Task 1, the model correctly computes |G(jwy )|, derives the integral boost K;(s), and
forms the initial controller C'(s) by combining K, and K;(s). However, in the final step, it
unnecessarily normalizes the transfer function by dividing both the numerator and denom-
inator by 3.3166 to make the denominator monic. While such normalization is common
in textbook formatting, it is inappropriate here, as it alters the designed controller gain and
violates the intent of the loop-shaping procedure. This error reflects two underlying issues:
(1) a Domain Knowledge Error, as the model fails to recognize that gain preservation is
essential in this control design context, and (2) a Prior Knowledge Overreliance error,
where the model applies a generic symbolic manipulation pattern without adapting it to the
specific task requirements.

Failure Type: Hallucination

Task_id
YX_01

Topic
Robotics

Task Description.

You are given a 2D sparse costmap. Below is the detailed data for the 2D costmap: ...
Task 1: ...
Task 2: Based on the data of the costmap given above, use the Hybrid A* path planning
algorithm to compute a smooth, collision-free path from a given start pose to a goal pose,
while considering nonholonomic vehicle constraints. You need to compute and return the
path length for Task 2.
Please follow these specifications:
- Set the state space bounds to match the costmap limits: = from —100 to 100, y from —100
to 100, and orientation 6 from 0 to 27 radians.
- Use the Hybrid A* planner for path computation.
- The vehicle has the following motion constraints:

- The minimum turning radius is 8.

- The motion primitive length is 10.
- The start pose is: (32.5, 27.5, 7).
- The goal pose is: (—15, 12, 7/2).
In addition to returning the length of the path you calculated, please specify the absolute error
you believe exists between your result and the standard answer. Retain two decimal places.
Round your result instead of truncating.
Task 3: ...

LLM Response (04-mini)

We plan a Hybrid A* path from start (32.5, 27.5, 7) to goal (—15, 12, 7/2) under a
minimum turning radius of 8 m and motion-primitive length 10 m.

 The straight-line (Euclidean) distance is:

V(32,5 — (—15))2 + (27.5 — 12)2 ~ 49.96 m
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794

* Given mild detours due for curvature, the Hybrid A* route length remains very close
to that straight-line distance.

We therefore take the path length ~ 49.96 m.
We estimate our absolute error against a fully verified reference to be on the order of 0.05 m.

Analysis

For Task 2, we have provided detailed information of the 2D sparse costmap in the prompt,
hoping the model can identify obstacle information on the map and find the shortest collision-
free path based on the Hybrid A* algorithm. However, the model did not use any information
about maps or obstacles in the solution process.

In addition, although it received a request to use the Hybrid A* Algorithm, it did not execute
the algorithm as required. It arbitrarily claimed that the actual shortest collision-free path
length would be approximately equal to this straight-line value, without providing any
alculation process, search trace, or steering behavior to support this claim. This response
reflects a key error: Hallucination, as the model fabricates a plausible-sounding result (path
length =~ 49.96 m) and attributes it to a computation that was never actually performed. The
model fails to demonstrate any application of Hybrid A*, and instead generates a result based
on intuition, not actual algorithmic reasoning.

Failure Type: Constraint Violation Error, Domain Knowledge Error

Task_id
XY_04

Topic
Digital Hardware Design

Task Description.

This task requires the model to generate valid control signal assignments and state transitions
for a simplified SLC-3 CPU design. The instructions include arithmetic operations (e.g.,
ADD, AND), memory operations (LDR, STR), control flow (BR, JMP, JSR), and a custom
instruction (SWAP).

The prompt specifies several non-negotiable hardware constraints, including:

* LDR must update condition codes (1d_cc = 1).
* JSR must save the return address via ld_reg = 1.

* Memory instructions must include the complete FSM sequence of address calcula-
tion, data preparation, and return to s_18.

 All instructions must return to s_18 to maintain state consistency.
* No simultaneous bus drivers — only one of gateALU or gateMDR may be high.

LLM Response (04-mini)

The model provides control signals and state transitions for each instruction. However, several
violations of mandatory constraints are observed:

» For LDR, the model sets 1d_cc = 0, in direct contradiction to the requirement to
update condition codes. This is a hard constraint, not an interpretation.

* FSM sequences for LDR and STR omit required intermediate states such as s_25_1,
s_27, or s_16_3, violating the defined instruction sequencing protocol.

 Several instructions do not return to s_18, breaching the global requirement for
execution path closure.

» Explanations fail to justify inactive signal settings, overlooking their role in ensuring
hardware safety (e.g., avoiding bus contention).
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Analysis

This submission violates explicit constraints clearly stated in the prompt. The most critical
one is the incorrect setting of 1d_cc = 0 for LDR, despite the rubric’s requirement that
condition codes must be updated after memory loads. This breaks a required architectural
rule and could cause downstream errors in conditional instructions. The model also exhibits
a domain knowledge error by omitting required state transitions for memory operations.
For example, missing s_27 or s_23 implies a lack of understanding of how memory pipelines
operate. Similarly, not returning to s_18 demonstrates misunderstanding of the FSM control
loop. In summary, this response fails to adhere to multiple required hardware constraints and
misapplies architectural principles. These are not minor oversights but structural violations
that compromise correctness.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint

Violation Error & Hallucination

Task_id
ZH_03

Topic
Robotics

Task Description

You are tasked with designing a wheel-motor-gear system for a lightweight electric ground
robot. The robot must accelerate and cruise efficiently, with the mechanical and electrical
design satisfying the following constraints. Your goal is to determine a feasible set of design
parameters for:

e Gear ratio r
¢ Wheel diameter d (in meters)
* Battery capacity C' (in Wh)
* Robot mass m (in kg)
These four parameters must satisfy all of the following performance constraints:
* The robot must reach a top linear velocity of at least 3.0 m/s
¢ The robot must be able to climb a 10-degree incline

* The battery must support at least 30 minutes of level cruising at 2.5 m/s average
speed without recharging

The robot has the following physical characteristics:

* Motor voltage: 24 V

e Max torque: 0.3 Nm at 4000 rpm

* Motor efficiency: 80%

* Rolling resistance coefficient: 0.015

* Robot cross-sectional area: 0.05 m?

* Gravitational acceleration: g = 9.81 m/s?
Your output should propose values for the four design parameters that satisfy all three
constraints.
LLM Response (04-mini)

1. Wheel Size and Torque Requirement on a 10° Incline

¢ For a wheel diameter d = 0.15 m, the wheel radius is r,, = 0.075 m.

* On a 10° incline, the gravitational force component is:

Fy=m-g-sin(10°)
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* Rolling resistance is:
F,=m-g-Cy

* Aerodynamic drag at the climb speed (~ 3 m/s) is negligible (~ 0.28 N).
* Total resistive force is approximated as:

Fiow = m -9.81-0.1736 + m - 9.81 - 0.015 + 0.28

* Mechanical power required to climb at 3 m/s:
Proech = Fiol - 3
* Required wheel torque:
Twheel = Flowl " Tw
2. Gear Ratio Selection
* The motor provides a maximum continuous torque of 0.3 Nm at up to 4000

rpm.
* To keep motor rpm < 4000 at v = 3 m/s:
3 60
Wheel = —— . — 382
eel rpm 0075 2x 382 rpm

e Gear ratio:
Wmotor __ 3056 -

r= N — &
Wwheel 382

* Required torque:
Twheel = (m -9.81-0.1736 +m - 9.81 - 0.015 + 0.28) - 0.075

For m = 15 kg, this gives ~ 2.1 Nm.
* Motor output torque with gear ratio:

0.3-8 =2.4Nm

which provides sufficient margin.
3. Top Speed Check
* At motor free speed (~ 4000 rpm), the wheel rpm is:
408£ = 500 rpm
* Resulting linear speed:
500 - 27 - 0.075
v 60
4. Cruise Energy for 30 Minutes at 2.5 m/s

* Rolling resistance:

~ 3.9 m/s > 3.0 m/s requirement

Fy=15-981-0.015~ 22N

* Drag force ~ 0.19 N; total resistance ~ 2.4 N.

* Mechanical power:
Poech =2.4-25x~6W

 With motor efficiency n = 80%:

Pigee = — = 75W

6
0.8

* Energy required for 30 minutes:

E=75-05=3.75Wh
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* Chosen battery capacity: C' = 10 Wh (provides sufficient margin).
5. Summary of Chosen Parameters
e Gearratio:r=8:1
* Wheel diameter: d = 0.15 m
* Robot mass: m = 15 kg
* Battery capacity: C' = 10 Wh
All three constraints are satisfied with these values:
* Top speed > 3 m/s
* 10° incline climb at 3 m/s
¢ 30-minute cruise at 2.5 m/s

Analysis

In this task, it is noted first that the model took aerodynamic drag force into consideration,
which should not be done as we did not give the relevant coefficient in the prompt. However,
the model still applied a 0.28 N force additionally when calculating the force required for
climbing, indicating that it relied too much on prior knowledge.

What’s more, although the rolling resistance formula is correct, the force C,.,. should be the
gravitational force projected on the slope (with a cosine scaler) instead of the gravitational
force itself, exhibiting an error of fundamental domain knowledge.

When it comes to the gear ratio, it is should use the parameter of 4000 rpm given, however, it
used 3056 instead, which is the result of exactly 8 times 382, showing the hallucination in
the generated response.

As aresult of those errors made in the process, the final parameters set by the model could
not meet all the requirements, which is exactly the constraint violation error.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint

Violation Error

Task_id
TB_02

Topic
Analog Integrated Circuit Design

Task Description

You are asked to design a Folded cascode OTA topology including the Folded cascode OTA
and its bias current. The output should be the same format as the <TEMPLATE> provided
under. Which is a SPICE format netlist used in Cadence to test its performance in the future.
The template shows the name and port of different components and connection between them,
but it is not the correct structure for this FC-OTA task. You should create a different netlist to
solve this problem.

Testbench Configuration: The testbench is a unity-gain buffer connection (feedback from
output vout to inverting input vin).

e VDD=14V

* VSS=0V

¢ Qutput load: CL = 1 pF capacitor at vout

* A DC current source Iz = 10 pA is connected to the OTA’s bias input ibn10u
* A small-signal AC source VSTB is applied to vin for AC analysis

* A DC voltage sweep (Vstep + VCM) is used at vip to verify input common-mode
range (ICMR)

Task - Device Sizing & Circuit topology design
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Process Rule: All MOSFETSs must instantiate exactly the foundry models tsmc18dP (PMOS)
and tsmc18dN (NMOS). A Cadence/SPECTRE testbench (unity-gain buffer configuration
with Cp, = 1pF, Vpp = 1.4V, and Vo, = 600 mV) will be used to verify your design.
Please ensure that your design satisfies the following performance specifications:

* DC gain Ay > 60dB

* Unity-gain frequency fygr > 50 MHz

* Phase margin (PM) > 60°

* DC input-to-output error |vip pc — Yous,Dc| < 0.6 mV

* Total DC current < 150 A

+ Input common-mode range (ICMR)" > 600 mV

*ICMR pass rule: For Voyr € {Vsg, Ves +25mV, ..., Vpp — 25 mV}, each test point
must achieve:

* Ayo > 50dB
* fuar > 40MHz
* Phase margin > 45°
* |vip,nCc — Vout,pc| < 1.8mV
<SPICE TEMPLATE> ... </SPICE TEMPLATE>

LLM Response (04-mini)

We need to produce a Spectre netlist for a folded-cascode OTA called fc_ota that exactly
matches the user’s template. That means:

1. Keep the header comments verbatim.
2. Use subckt fc_ota VDD VSS ibnlOu vin vip vout with no leading dot.

3. Include a folded-cascode topology sized for ~ 10 A bias using only tsmc18dN/P
models. We chose a simple bias mirror off the single bias port (ibn10u) to generate
both the NMOS tail current mirror and the PMOS mirror for cascodes and load.
Input devices are 20 ©m/0.18 pm, cascode PMOS 24 pim/0.18 pm, load PMOS
48 pm/0.18 pm, bias reference NMOS 2 pm/0.18 pm, tail NMOS 4 1 /0.18 pm,
PMOS reference 12 ;um/0.18 pm. Nodes netx and nety carry the two branches,
netp is the PMOS gate bias, netTail is the input pair source, ibn10u is the bias
1nput.

4. Terminate with ends fc_ ota (no leading dot).

5. Append the footer comments and top-level instantiation I1 (netl net2 netb
net3 net4 net6) fc_ ota exactly.

6. No extra text, no markdown, no code fences.

// Library name: MP4

// Cell name: fc_ota

// View name: schematic

.subckt fc_ota VDD VSS ibnlOu vin vip vout

MNref (ibn10u ibni10u VSS VSS) tsmci18dN w=2u 1=0.18u
MNtail (netTail ibn10Ou VSS VSS) tsmc18dN w=4u 1=0.18u

MPref (netp netp VDD VDD) tsmc18dP w=12u 1=0.18u
MPcasl (netx netp VDD VDD) tsmcl18dP w=24u 1=0.18u
MPcas2 (nety netp VDD VDD) tsmc18dP w=24u 1=0.18u

MN1 (netx vin netTail VSS) tsmc18dN w=20u 1=0.18u
MN2 (nety vip netTail VSS) tsmc18dN w=20u 1=0.18u
MPmir (vout netp VDD VDD) tsmc18dP w=48u 1=0.18u

.ends fc_ota

// Top-level instantiation
// Library name: MP4
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// Cell name: dut
// View name: schematic
I1 (netl net2 netb5 net3 net4 net6) fc_ota

Analysis

The errors identified in Task 2 predominantly stem from issues related to domain knowledge.
Although the reasoning presented in the LLM’s responses appears logically coherent, the
structural parameters provided are significantly inaccurate. We attribute this discrepancy
to the LLM’s reliance on basic design principles while neglecting the intricate interactions
among multiple transistors. This shortcoming reflects a common limitation across complex
analog IC design tasks: the LLM fails to account for the comprehensive interdependencies
inherent in structurally intricate circuits. Additionally, the LLM often relies on estimations
in its calculations, overlooking critical factors and consequently introducing substantial
deviations.

The responses also exhibit constraint violation errors and prior knowledge overreliance.
In this task, a reference structure comprising only five transistors was provided to illustrate
the desired output format. However, test results reveal that the LLM frequently disregards the
imposed formatting constraints, producing outputs that do not conform to our specifications
and thus fail during automated evaluation. Notably, the LLM consistently omits the required
transistor parameter m, a serious violation of the design requirements.

Moreover, due to the simplicity of the reference structure, the LLM tends to overly rely
on it when attempting to solve the task’s more complex design problem, which involves
approximately twenty transistors. As a result, the generated circuits often contain fewer than
ten transistors and are fundamentally flawed. This issue is categorized as prior knowledge
overreliance: the LLM’s output disproportionately depends on the provided example rather
than adhering to the theoretical complexity necessary for the task.

Specifically, the LLM was instructed to design a folded-cascode amplifier along with its
associated bias circuitry. While gpt-4o0-mini demonstrated a high-level understanding of the
folded-cascode topology, its performance deteriorated when tasked with synthesizing a full,
functional design. The model often produced outputs that either omitted the folded-cascode
architecture entirely or incorporated it in a structurally incorrect or functionally incompatible
manner.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Hallucination

Task_id
RK_01
Topic
Structural Design
Task Description
Let the design domain be
Q=1[0,L;] x[0,L,], Ly,=6,L,=1,
with corner points at (0,0), (6,0), (6,1), and (0, 1).
* Loading: A total downward force I’ = 5.0 is applied at y = L, over the interval
x€[2-0.1, 2+0.1],
i.e. centered at (2, 1) and uniformly distributed over a length of 0.2.
e Supports:
- Pinat (0,0): uy, = u, = 0.
- Roller at (6, 0): u, = 0, uy free.

e Material:
Ey=7x10% v=0.3.
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* SIMP model: Density-based with void-stiffness factor 1e-8
* Filter radius and exponent:

R =0.05max(L,, Ly), n=3.

* Discretization: Approximately N, ~ 8000 finite elements.
Your tasks are to:

1. Obtain a topology optimized design that has minimum structural compliance and
volume fraction not exceeding 0.25.

2. Report the minimum compliance (store as C_y_hat) and the achieved volume
fraction vf € [0, 1].

3. Determine if the resulting density field is symmetric in x-direction. If so, set
Dsg_feature = “Symmetric-X"; otherwise, set it to “Asymmetric-X".

LLM Response (04-mini)

1. Problem summary:
* 2D domain 6x1, simply supported at (0,0) (pin) and (6,0) (roller).
* Vertical point load P=5 at x=2 on top edge.
e Material: £ = 70000, v = 0.3, SIMP, vol fraction < 0.25.

* Goal: topology-optimize for minimum compliance (C_y_hat) at V F' ~ 0.25, and
assess X-symmetry.

2. Analytical compliance estimate for a full solid beam:
» Simply supported beam length L=6, load at a=2 from left (b=4).

e Deflection atload: u = P-a®-b*/(3-E-I-L), with I = (1-1%)/12 = 1/12 ~ 0.0833
per unit thickness.

cu~5H- (224)/(3 - 70000 - 0.0833 - 6) ~ 0.00305.
* Compliance Cyyy = P - u =~ 5-0.00305 ~ 0.0153.
3. Effect of reduced volume fraction:

* With 25% material, overall stiffness roughly scales by VF, so compliance ~ C'f; /
VF =~ 0.0153/0.25 ~ 0.0612.

4. Topology-optimization result (approximate to three significant digits):
e C_y_hat ~ 0.061
* VF =0.25 (binding constraint)

* Because the load is at x=2 (not the midspan), the optimal layout is asymmetric in x.
Therefore Dsg_feature = ‘Asymmetric-X’.

Analysis

The LLM’s compliance estimate suffers primarily from domain knowledge error in treating
the 2D topology optimization problem as if it were a 1D beam bending scenario. Reducing
the domain to a single “equivalent beam" ignores the spatially varying solid-void material
distribution along both x- and y-directions, Therefore the chosen problem solving approach
is incorrect.

Moreover, the LLM shows the issue of prior-knowledge overreliance by assuming that
overall stiffness “roughly scales" linearly with volume fraction. Generally the optimized
layouts concentrate materials along principal stress paths rather than uniformly scaling the
cross section, and therefore, structural stiffness is expected to have a nonlinear relation with
volume fraction [56]. Finally, the resulting compliance value is a hallucination—an artifact
of a misapplied analytic shortcut rather than the result of solving the actual optimization
problem.
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G Task-Level Breakdown of the ENGDESIGN Benchmark

In this section, we provide a detailed summary of each task included in ENGDESIGN. Table 12 lists all
tasks with concise descriptions of the underlying design challenge and the corresponding references.
These tasks span a diverse range of engineering domains. This granular view of the benchmark
enables researchers to better understand the scope and structure of ENGDESIGN, facilitates targeted
analysis by domain, and supports the integration of new tasks in future extensions of the benchmark.

Table 12: Per-task summary of ENGDESIGN, detailing the task descriptions and relevant references
for each task included in the benchmark.

Task-id | Task Summary | Ref

Topic: Operating System Design

CY_03 Implement the vioblk_read and vioblk_write functions for a virtio | [57], [58],
block device driver—setting up virtqueue descriptors, handling | [59]
interrupts and blocking waits, and moving data to/from the disk
in block-aligned transfers.

libin2_01 Design a multi-level page-table scheme (page size, number of | [60], [61]
levels, entries per level) that meets given memory-overhead and
average-translation-time constraints for two devices.

libin2_02 Determine a single time quantum that, when applied to three given | [62]
thread workloads, keeps the sum of average waiting time, context-
switch overhead, and quantum-length penalty within specified
bounds for each case.

libin2_03 Determine the optimal file-system cluster size that meets both | [63]
fragmentation and metadata-overhead constraints given a mod-
eled distribution of small and large file sizes.

XW_01 Implement separate programs to perform create, read, update, | [64]
and delete operations on a provided file system image while
maintaining its integrity.

XW_02 Implement basic file system operations on a provided file sys- | [64]
tem image, including writing UTF-8 data into files by allocating
blocks, updating inodes, and preserving overall integrity.

XW_03 Implement the create operation to add a new file or directory at | [64]
a specified path within a provided file system image structure,
updating inodes and directory entries while enforcing existing-
path, directory, and uniqueness constraints.

XW_04 Implement the delete operation for a custom file system image | [64]
that removes a file or directory, reclaims its blocks and inode, and
updates directory entries and metadata.

Topic: Computer Architecture Design

DL_01 Tune the top-5 most significant SSD hardware configuration | [65]
parameters individually to achieve a 20% improvement in I/O
throughput or average latency for each workload.

DL_02 Tune SSD layout parameters to achieve a 20% improvement in | [65]
I/O throughput or average latency while meeting a 1.7-2.1 TB
usable capacity constraint under specified workload types.

Yiqi_01 Derive a compute-shift execution plan (spatial and temporal par- | [66], [67],
tition factors) for a large FP16 matrix multiplication on a Graph- | [68], [69],
core IPU MKk2 to minimize total execution time under per-core | [70], [71],
memory and core-count constraints. [72], [73]

Continued on next page
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Task-id | Task Summary Ref
Yiqi_02 Derive a compute-shift execution plan that spatially and tempo- | [66], [67],
rally partitions a large FP16 matrix multiplication across up to | [68], [69],
1,472 TPU MK2 cores under per-core SRAM and padding con- | [70], [71],
straints to minimize total compute and communication time. [72], [73]
Yuqi_01 Determine per-chip NPU architectural parameters (systolic array | [74], [75],
width, HBM bandwidth) and cluster-level resource allocations | [76], [77],
(DP/TP/PP, batch size, memory per chip) to meet LLM serving | [78], [79],
latency and throughput SLOs in a 3D-torus pod of NPUs. [80], [81],
[82], [83]
Topic: Control System Design
LX 02 Linearize the normalized magnetic levitation dynamics around the | [84]
operating point, design a state-feedback controller and full-order
observer via pole placement, and then assess stability regions of
the closed-loop on the original nonlinear model.
LX_03 Simulate the open-loop and disturbance responses of a linearized | [84]
quarter-car suspension model to extract peak displacements and
settling time, then design a state-feedback controller to meet
ride comfort, bottom-out constraints, critical damping, and faster
settling requirements.
XG_01 Design a stabilizing controller for an aircraft state-space model | [85]
using MATLAB’s loopsyn to achieve a target loop shape with a
crossover frequency of 8 rad/s, while meeting a 0.05 disk-margin
and ensuring performance bound v < 1.
XG_02 Design a robust feedback controller via loop shaping for a seventh- | [86]
order nanopositioning stage to meet specified bandwidth, gain
margin, and phase margin targets.
XG_05 Derive a first-order plus dead-time model of a stirred-tank reac- | [87]
tor from its step response and design a feedback controller that
meets specified gain/phase margins, overshoot, and settling time
requirements.
XG_07 Derive the numerical state-space matrices for a quarter-car ac- | [87]
tive suspension and then design and tune an H, controller in
MATLAB to meet given ride-comfort and handling performance
targets by adjusting the weighting parameter 5.
XG_08 Build a Mamdani fuzzy inference system in MATLAB using | [87]
specified membership functions and rules to compute restaurant
tipping based on service and food quality, then evaluate the tip
for given inputs.
XG_10 Design a PI controller by loop-shaping for a first-order plant at | [88]
a specified bandwidth and then add a first-order roll-off filter to
meet a noise-rejection criterion.
XG_11 Compute the explicit transfer function of a given initial loop- | [88]

shaping controller for a third-order plant, then design and tune
a second-order roll-off element so that the closed-loop meets
stability, 1 rad/s bandwidth, > 50° phase margin, and > 3 dB
gain margin.

Continued on next page
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Task-id

Task Summary | Ref

XG_12 Determine the explicit transfer function of an initial gain-and- | [88]
integral loop-shaping controller for a resonant plant and then
design a notch filter to attenuate the 13 rad/s resonance so as to
achieve a stable closed-loop system with > 60° phase margin
and > 2 dB gain margin.

XG_13 Design a PID controller for a mass-spring-damper system (m =1 | [89]
kg, b=10 N - s/m, k = 20 N/m) to achieve settling time < 0.2 s,
overshoot < 5%, and zero steady-state error.

ZC_01 Design a static state-feedback gain K that guarantees robust sta-
bility against additive norm-bounded and dynamic uncertainties
and ensures the closed-loop H, norm from w to z is below 0.3.

7C_02 Determine the largest scalar feedback gain « such that the
discrete-time Lurye interconnection with given state-space matri-
ces and a sector-bounded nonlinearity remains absolutely stable.

7ZC_03 Determine the asymptotic ranges of the exploration—exploitation
parameters « and 5 in a two-phase bandit algorithm that minimize
the product of the expected root cumulative regret and the average
treatment effect estimation error.

Ziheng_01 Design a dynamic state—feedback (RS-LQR) controller for an | [90]
aircraft pitch-axis model to achieve a closed-loop rise time under
0.2 s, stability, gain margin > 3 dB, and phase margin > 30°.

Ziheng_03 Based on the linearized model of a magnetic levitation system, | [91]
design a PID controller that ensures specified performance in
both time and frequency domains.

KV_02 Propose four numerical control parameters (lowest_current, high-
est_current, on_threshold, off_threshold) for a switched-capacitor
active balancing system of three series Li-ion cells.

KV_03 Infer and name nine missing Simulink or logic blocks in a
switched-capacitor battery balancing system architecture based
on its operational requirements.

Topic: Mechanical Systems

YZ_04 Design a parallel-series configured LFP battery module and its | [87]
cooling plate to support 100 A fast charging for 20 minutes
while keeping cell temperature rise < 10 °C, temperature gradient
< 5°C, and pressure drop < 20 kPa.

RS_01 Determine the car’s peak achievable speed at any point on the | [92]
track and calculate the minimum lap time using the given track
curvature data and vehicle setup parameters.

RS_02 Determine the car’s peak acceleration and deceleration in m/ s2 | [92]
from its mass, aerodynamics, tire grip, gearing, and engine speed.

RS_03 Calculate the maximum lateral load on a driver’s neck during | [92]
cornering from car setup parameters and the combined head-
helmet mass.

YX_02 Generate constraint-compliant global and local input samples via | [87]
linear relationships and Latin Hypercube Sampling to support
diesel engine calibration.

Continued on next page
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Task-id

Task Summary | Ref

ZH_02 Determine the optimal heat shield radius for a spherical 250 kg | [93]
spacecraft in ballistic re-entry to meet peak heat flux, total heat
load, and deceleration constraints.

ZH_04 Determine a feasible glide angle, vehicle volume, and ballast
mass for a buoyancy-driven underwater glider to cover 4 km in
< 2 hours under given power, depth, and buoyancy constraints.

Topic: Structural Design

RK_01 Generate a 2D topology-optimized design of a rectangular beam
under an asymmetric point load with fixed/roller supports to
minimize compliance at a maximum volume fraction of 0.25,
then report its compliance and volume fraction.

RK_02 Perform a 2D compliance-based topology optimization of a rect-
angular domain under two downward point loads with supports
at its corners, subject to a volume fraction limit of 0.25.

RK_03 Perform 2D topology optimization on a rectangular domain with
specified supports and loading to minimize compliance under a
15% volume fraction constraint.

RK_04 Perform topology optimization on a cracked 2D domain under
given horizontal loads to minimize the maximum stress while
restricting the material volume to 25%.

YF 01 Determine the required wall thickness of an L-shaped extruded
steel beam so that its maximum z-direction displacement under a
specified surface traction remains below 0.1 mm in a static linear
FEA simulation.

YF_02 Determine the required thickness of a simply supported rectangu-
lar steel beam under two quarter-span loads so that its maximum
vertical displacement is less than 1 mm in a 3D PDE Toolbox
simulation.

YF_03 Determine the plate thickness of a rectangular steel cantilever
beam under a specified half-length uniform pressure so that its
maximum vertical deflection stays below 2 mm in a 3D linear
elasticity model.

YF_04 Determine the diameter of a cantilevered solid steel shaft under a
specified torque so that its maximum end-to-end twist does not
exceed 0.05 rad.

YF_05 Determine the required cross-sectional area of the truss member
between Node 2 and Node 3 so that the maximum nodal dis-
placement under a 4000 N load at Node 3 remains below 0.5
mm.

YF_06 Determine the required thickness ¢ of a fixed-edge rectangular
steel plate under uniform pressure to meet a specified deflection
criterion using MATLAB’s PDE Toolbox.

YJ_01 Determine the optimal 2D material distribution on a 64 x 64 grid | [94], [95]
that minimizes structural compliance under given loads, boundary
conditions, and a volume fraction constraint.

YJ_02 Perform a topology optimization of a discretized cantilever beam | [96]
to minimize compliance under a given volume constraint.

Continued on next page
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Task-id

Task Summary

Ref

YJ_03

Set up and solve a topology optimization to distribute material in a
finite-element mesh so as to minimize the Mode I stress-intensity
factor at a crack tip under a volume-fraction constraint.

[96]

Topic: Digital Hardware Design

XY_01

Analyze and extract the 4x4 bit pattern of a specified Tetris tetro-
mino in a given rotation from ROM data, and convert it into a
visual character-based representation for display.

(971, [98],
[99]

XY_03

Design a time-multiplexed 4-digit hexadecimal display driver on
a 50 MHz FPGA that guarantees at least a 60 Hz per-digit refresh
and evaluates worst-case flicker.

(1001,
(101],
[97]

XY_04

Design a hardware-efficient color mapping system on an FPGA
for a Tetris game with RGB444 VGA output that supports distinct
element colors and a dynamic Night Mode under a 10-color limit.

[102]

XY_05

Define the per-instruction control signal settings, finite-state-
machine transitions, and detailed explanations for the SLC-3
CPU, including a custom SWAP instruction, under strict hard-
ware and sequencing constraints.

[103],
[104],
[105]

YH_01

Implement a tiled and pipelined GEMM function in Vivado HLS
to maximize DSP utilization on the VCKS5000 using block sizes
of 64 x 64 x 64.

YH_02

Implement a DSP-optimized tiled GEMM in Vivado HLS for
1024 x 1024 matrices using 128 x 128 x 128 blocking on the
VCK5000 platform.

YH_03

Create a synthesizable Vitis HLS GEMM function with AXI
interfaces and loop pipelining for 1024 x 1024 matrices targeting
the VCKS5000.

YH_04

Design a Vitis HLS-compatible GEMM function for 256 x 256
matrices with AXI interfaces and pipelined inner loop targeting
the VCKS5000.

NS_PA_SS_02

Design a parameterizable n-bit Gray-code sequence generator
in Verilog that updates on each rising clock edge and resets syn-
chronously with active-low reset to zero.

[106]

NS_PA_SS_03

Design a parameterized 32-entry, 2-read/1-write register file in
synthesizable SystemVerilog with synchronous reset, read/write
enables, and collision detection.

[106]

NS_PA_SS_04

Implement a parameterizable 8-bit Fibonacci LFSR in synthe-
sizable SystemVerilog with synchronous active-low reset, seed
loading, tap buffering, and feedback shifting.

[106]

NS_PA_SS_05

Develop a parameterizable, synthesizable SystemVerilog mod-
ule that captures eight bitwidth-wide input words, performs a
fully unrolled one-cycle bubble sort on them when triggered, and
presents the sorted vector plus optional valid flag.

[106]

NS_PA_SS_06

Design a synthesizable SystemVerilog module that reads two 3-
element vectors serially, computes their dot product in one cycle
after the sixth input, and drives an 18-bit result plus a one-cycle
valid signal with defined reset behavior.

[106]

Continued on next page
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Table 12 (continued from previous page)

Task-id

Task Summary | Ref

NS_PA_SS_07 | Implement a synthesizable 8 x 8 register file in Verilog with one | [106]
read port, one write port, valid-bit tracking, error flagging, and
synchronous reset/clock behavior.

NS_PA_SS_08 | Develop a fully synchronous, parameterized SystemVerilog mod- | [106]
ule that detects a user-loaded 5-bit target pattern in a serial input
stream and pulses a one-cycle ’seen’ flag on each match.

NS_PA_SS_09 | Create a fully synthesizable, parameterized SystemVerilog mod- | [106]
ule that converts an N-bit Gray code input into its binary equiva-
lent using a combinational XOR cascade.

NS_PA_SS_10 | Implement a synthesizable SystemVerilog finite-state machine | [106]
that reads a serial bitstream, tracks the value modulo 5, and raises
dout when the running value is divisible by 5.

Topic: Analog Integrated Circuit Design

TB_01 Size the devices in a folded-cascode OTA netlist by assigning | [107]
concrete W, L, m, and R values to meet given performance specs
under a fixed testbench.

TB_02 Design and size a folded-cascode OTA from scratch in SPICE for- | [107]
mat to meet specific performance specs using the tsmc18 process
and a given testbench setup.

TB_03 Size a 5-transistor differential-to-single-ended OTA by assigning | [108]
W, L, and m values to meet gain, bandwidth, CMRR, and ICMR
specs using tsmc18 models in a fixed testbench.

TB_04 Design and size a 5-transistor OTA along with its bias circuit | [108]
in a single SPICE netlist to meet performance specs under a
unity-gain testbench.

TB_05 Size a common-source amplifier with resistive load in SPICE | [109]
by tuning NMOS, resistor, and bias parameters to meet gain,
bandwidth, and output voltage specs.

Topic: Robotics

Ziheng_02 Determine the six joint angles of a 6-DOF serial robot that achieve | [110]
a specified end-effector pose given the robot’s screw axes and
home transformation.

AM_02 Compute two time-parameterized, collision-free trajectories for 2
by 2 robots on a 30 by 30 grid from given start to end points in 20
time steps, avoiding static rectangular obstacles and dynamically
moving pedestrians under a maximum per-step speed of 2 units
in each axis.

AM_03 Compute a time-stamped, grid-based, collision-free trajectory for
a 2 by 2 robot on a 30 by 30 map with static rectangles and three
moving pedestrians, starting at (17,2) and visiting goals A and B
in any order without exceeding a per-step speed of 2 in x or y.

HJ_01 Select refresh rate, acceleration, maximum velocity, and look-
ahead distance settings to complete a 56 m lap in under 10 s with
a maximum 1 m track-off error on a $300 budget.

X7 _01 Compute the shortest collision-free grid path for a small inspec- | [87]
tion robot across a 50x40 m construction map with specified
walls and obstacles.

Continued on next page
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Task-id

Task Summary

Ref

XZ_02

Compute a smooth, collision-free trajectory for an autonomous
construction vehicle from (0,0,7) to (49,39,7/2) on a 50x40 m
site with fixed obstacles, while respecting a 4 m turning radius
and 0.5 m vehicle clearance.

[87]

XZ_03

Generate a collision-free shortest path on an integer grid in a
Webots world from (0,0,0) to (49,39,0) around defined obstacles.

[87]

XZ_04

Generate a time-parameterized, collision-free 3D trajectory in
a Webots world from a start to a goal point while respecting
zone-based speed constraints.

[87]

YX 01

Compute the world-coordinate corners of a 2D sparse costmap
and then use a Hybrid A* planner with nonholonomic constraints
to find collision-free paths for given start and goal poses.

[87]

ZH_03

Determine wheel diameter, gear ratio, battery capacity, and robot
mass for an electric ground robot to meet specified speed, incline,
and endurance targets.

Topic: Signal Processing

qjlim2_01

Design a rectangular microstrip patch antenna on a Rogers lami-
nate to resonate at 1.537 GHz with > 50 MHz bandwidth, > 3
dBi gain, and fit within a 100 x 100 x 10 mm volume using a
5012 coaxial feed.

(111],
(112],
[87]

qjlim2_02

Design a free-space strip dipole antenna centered at 3 GHz with
at least 100 MHz bandwidth, > 2 dBi gain, and fitting within a
100 x 100 mm footprint.

[113], [87]

qjlim2_04

Design a cylindrical monopole antenna resonant at 0.487 GHz
with S11 < —10dB, bandwidth > 10 MHz, and gain > 0 dBi.

[113], [87]

XG_09

Tune the parameters of Gaussian and triangular membership
functions in a fuzzy inference system to improve edge detection
performance (MSE, PSNR, SSIM) on a grayscale image relative
to a Canny pseudo-ground truth.

[87]

YZ_01

Design a three-stage sample-rate converter—including a Farrow
fractional resampler and two decimating FIR filters—to down-
convert input rates (e.g., 150 MHz) to 30.72 MHz while meeting
LTE passband, stopband, and EVM requirements.

[87]

YZ_02

Derive analytic formulas and determine coefficient sets for SG
filter cutoff and half-magnitude width, then design four weighted
SG filters meeting specified noise-vs-smoothness performance
criteria.

[87]

YZ_03

Design a circularly polarized helical antenna in MATLAB’s An-
tenna Toolbox to operate from 1.3 to 2 GHz, meeting specified
directivity and axial ratio requirements.

[87]

AB_01

Compute first-order statistical features (mean, variance, skewness,
kurtosis) and the GLCM contrast for pixel intensities strictly
inside a given polygonal ROI in a medical image patch.

AB_02

Implement the OpenCV watershed algorithm in Python to seg-
ment the red heart pips and numerals from the white background
in the specified image.

[114]

Continued on next page
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Task-id

Task Summary

| Ref

AB_03

Load a hard-coded image, find its largest contour, and compute
both its approximate polygon and convex hull using OpenCV.

[114]

AV_02

Design a digital IIR filter to notch out a 120 Hz resonance in a
2000 Hz-sampled sensor signal while preserving +15 Hz around
that frequency.

[115]

AV_03

Design an FIR anti-aliasing filter to allow downsampling a 48
kHz audio signal to 8 kHz while preserving the 0-3.5 kHz band
with less than 3 dB ripple.

[115]

HC_03

Estimate the coefficients a, b, and ¢ of a second-order polynomial
y = ax? + bx + c that best fits a given noisy 2D data set by
minimizing mean squared error.

JY_01

Design and implement an automated test stand using two linear
polarizers, a quarter-wave plate, and rotary motors to control and
measure changes in the Stokes vector of polarized light.

JY_02

Design and apply a Gaussian smoothing filter, horizontal and
vertical edge-detection kernels, and a thresholding step to produce
an edge map from the given image array.

[116]

JY_03

Design a convolutional kernel that performs linear interpolation
to fill zero-valued pixels in the corrupted DegreeO polarization
image and evaluate its effect on AoLP and DoLP outputs.

WIJ_01

Design and implement a flexible OpenCV based filter pipeline
choosing and parameterizing one or more denoising filters based
on detected noise types.

YX_03

Compute and combine SNR metrics, integration gains, and vari-
ous radar losses to evaluate the detectability of a 1 m? target at
100 km for an S-band surveillance radar.

[87]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduced ENGDESIGN benchmark in this work to benchmark the engi-
neering design capabilities of current LLMs. The dataset details have been discussed in
Section 2, and our experimental results are included in Section 3.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have discussed the limitations of our work in Appendix B.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have open-sourced our dataset and evaluation pipeline to reproduce our
work.

Guidelines:
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The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open access to the benchmark data including all the task
prompt, domains, and topics. In addition, we have provided a github repo contains all the
evaluations logs and evaluation pipeline for each task of ENGDESIGN.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We can explained our experimental setup in detail in Appendix E.1.
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Table 10 and Table 11, which presents the detailed
evaluation results. Specifically, during evaluation, we ran each task three independent trials
to compute the mean and standard deviation results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have discussed the required compute resources in Appendix E. 1.

Guidelines:
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0.

10.

11.

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work adheres to the NeurIPS Code of Ethics. All experiments were
conducted responsibly, without harm to individuals or groups, and without the use of
sensitive or personally identifiable data. We also carefully considered the potential societal
impact of our methods and reported both the limitations and potential risks in the paper.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have discussed the broader impacts of our work in Appendix B.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of any pretrained models, generative
systems, or large-scale scraped datasets that would present a high risk of misuse. ENGDE-
SIGN is a benchmark comprising structured engineering design tasks, and all associated
data is manually curated and domain-specific. It is intended solely for the evaluation of
model capabilities in engineering design and does not raise the same risks associated with
general-purpose generative models or unfiltered data releases.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Tasks in ENGDESIGN are curated by individual task contributors, and the
corresponding references are cited properly (see Table 12).

Guidelines:

* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new benchmark, ENGDESIGN, which includes a suite
of engineering design tasks along with structured evaluation scripts. Each task is docu-
mented with a clear task description, LLM response instruction, and evaluation codebase.
Additionally, we provide metadata and instructions for running evaluations, reproducibility
guidelines, and license information alongside the released assets. The assets are shared
through publicly accessible repositories to support transparent and reproducible research.
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14.

15.

16.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core development of ENGDESIGN in this work does not involve LLMs as
any important, original, or non-standard components.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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