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Abstract

Modern engineering, spanning electrical, mechanical, aerospace, civil, and com-1

puter disciplines, stands as a cornerstone of human civilization and the foun-2

dation of our society. Today, industry pioneers dream of developing general-3

purpose AI engineers capable of designing and building humanity’s most ambitious4

projects—from starships that will carry us to distant worlds to Dyson spheres that5

harness stellar energy. Yet engineering design represents a fundamentally different6

challenge for large language models (LLMs) compared to traditional textbook-style7

problem solving or factual question answering. Although existing benchmarks have8

driven progress in areas such as factual question answering, code synthesis, and9

scientific problem solving, real-world engineering design demands the synthesis10

of domain knowledge, navigation of complex trade-offs, and management of the11

tedious processes that consume much of practicing engineers’ time. Despite these12

shared challenges across engineering disciplines, no benchmark currently captures13

the unique demands of engineering design work. In this work, we introduce EN-14

GDESIGN, an Engineering Design benchmark that evaluates LLMs’ abilities to15

perform practical design tasks across nine engineering domains: Operating Sys-16

tem Design, Computer Architecture Design, Control System Design, Mechanical17

Systems, Structural Design, Digital Hardware Design, Analog Integrated Circuit18

Design, Robotics, and Signal Processing. Unlike existing benchmarks that focus19

on factual recall or question answering, ENGDESIGN uniquely emphasizes LLMs’20

ability to synthesize domain knowledge, reason under constraints, and generate21

functional, objective-oriented designs. Each task in ENGDESIGN represents a22

real-world engineering design problem, accompanied by a detailed task description23

specifying design goals, constraints, and performance requirements. We pioneer24

a simulation-based evaluation paradigm where LLM-generated designs undergo25

rigorous testing through executable, domain-specific simulations—from circuit26

SPICE simulations to structural finite element analysis, from control system val-27

idation to robotic motion planning. ENGDESIGN establishes a new benchmark28

paradigm that moves beyond textbook knowledge to assess genuine engineering29

capability and shifts evaluation from static answer checking to dynamic, simulation-30

driven functional verification, marking a crucial step toward realizing the vision of31

engineering AGI.32

1 Introduction33

Modern engineering, spanning electrical, mechanical, aerospace, civil, and computer disciplines34

[1, 2, 3, 4], stands as a cornerstone of human civilization and the foundation of our society. From35

the electrical grids powering our cities to the aerospace systems launching us beyond Earth, from36
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analog integrated circuits forming the foundation of electronics to the structural designs supporting37

our skylines, engineering disciplines have woven themselves into the fabric of human existence38

[5, 6, 7]. At its core, engineering design is the systematic and creative process that engineers use to39

solve problems and create functional products, systems, or processes, transforming requirements and40

constraints into tangible solutions that meet human needs. Recent advances in large language models41

(LLMs) have led to remarkable performance on conventional question-answering (QA) benchmarks,42

with strong results across a wide range of tasks—from textbook-level scientific problem solving43

[8, 9, 10, 11], to code synthesis [12, 13, 14], and even to answering textbook-level questions across44

various engineering domains [15, 16, 17]. Today, industry leaders aspire to build on such progress45

in LLMs to create general-purpose AI engineers capable of bringing to life humanity’s boldest46

ambitions-from interstellar starships to Dyson spheres that harvest stellar energy-leveraging these47

foundation models’ vast knowledge across engineering domains and their potential to transcend48

traditional disciplinary boundaries that constrain human engineers [18].49

However, practical engineering design confronts LLMs with a grand challenge profoundly different50

and vastly more complex than conventional factual recall or textbook-level engineering problem51

solving. Specifically, real-world engineering design demands the synthesis of domain knowledge,52

navigation of complex trade-offs, management of the tedious processes that consume much of53

practicing engineers’ time, and rigorous validation through domain-specific simulators to ensure that54

designs meet functional requirements and safety constraints. Yet despite progress in textbook-level55

engineering problem solving, no existing benchmark captures the distinctive demands of practical56

design work–with its multifaceted, open-ended challenges across multiple engineering disciplines.57

In this work, we introduce ENGDESIGN, the first benchmark for holistically evaluating LLMs58

on authentic, multi-domain engineering design challenges. Unlike traditional QA formats, our59

benchmark requires models to function as practicing engineers, producing functional solutions,60

such as dynamical system controllers, material structure designs, analog integrated circuits, or GPU61

architectures that meet rigorous performance requirements. ENGDESIGN uniquely emphasizes62

the synthesis of domain knowledge, constraint-based reasoning, and the generation of functional,63

objective-oriented designs, spanning practical design problems across nine engineering domains:64

Operating System Design, Computer Architecture Design, Control System Design, Mechanical65

Systems, Structural Design, Digital Hardware Design, Analog Integrated Circuit Design, Robotics,66

and Signal Processing. Each task in ENGDESIGN is accompanied by an executable evaluation67

pipeline that validates designs against task requirements using domain-specific simulation tools68

such as SPICE simulations [19], structural finite element analysis [20], MATLAB Control System69

Toolbox [21], and other scientific software tailored to specific engineering domains. Our approach70

establishes a revolutionary evaluation paradigm: assessment using engineering simulation tools.71

This simulation-based approach fundamentally shifts evaluation from linguistic pattern matching to72

functional verification, ensuring that solutions are assessed based on their engineering merit rather73

than textual plausibility.74

ENGDESIGN advances LLM evaluation methodology by moving beyond conventional question-75

answering benchmarks to address the open-ended, constraint-driven nature of real-world engineering76

design. Our key contributions include:77

• The first multi-domain engineering design benchmark. Unlike QA benchmarks that78

test narrow factual or procedural knowledge, ENGDESIGN evaluates LLMs on complex79

engineering design challenges spanning diverse engineering disciplines (e.g., mechanical,80

electrical, civil), requiring synthesis of domain knowledge, constraint satisfaction, and strong81

reasoning capabilities.82

• Executable simulation-based evaluation. We replace static correctness checks with83

dynamic, domain-specific evaluation pipelines. Each task includes human-designed task-84

specific evaluation scripts that rigorously verify functional feasibility (e.g., via simulation,85

constraint validation, or performance testing), ensuring objective, reproducible scoring86

grounded in real engineering standards.87

• Partial-credit grading for incomplete solutions. Conventional benchmarks often use88

binary scoring, but ENGDESIGN’s rubrics quantify incremental progress (e.g., 20/100 for89

delivering a stable controller that meets partial performance requirements). This granularity90

reveals nuanced capability gaps and rewards iterative refinement.91
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QA Style Question 
A sample question from MMLU-Pro

Two long parallel conductors carry 100 A. If the 
conductors are separated by 20 mm, the force per meter 
of length of each conductor will be
(A) 100 N 
(B) 0.01 N 
(C) 10 N 
(D) 0.5 N 
(E) 0.001 N 
(F) 5 N 
(G) 1 N 
(H) 50 N 
(I) 0.1 N 
(J) 0.0001 N

Design Style Task
A sample task from EngDesign (Ours)

In this task, you are required to design a suitable thickness (Th) of a rectangular steel beam subjected 
to a dual-point load, applied at the quarter-span locations ⋯ You are given the following fixed parameters:
- 'L = 1000' mm  (Total span length)
- 'w = 40' mm  (Beam width, constant)
- Two vertical downward forces: F = 1000 N each, applied at quarter-span locations
- Material properties:
- Young’s modulus: 210,000 MPa
- Poisson’s ratio: 0.3
⋯
Your task is to:
- Propose a structurally sound value for Th (thickness of the beam, in mm)
- Provide a brief justification for your choice of thickness, considering stiffness, loading, and geometric 
constraints.

QA Style Evaluation Design Style Evaluation

Answer Extraction

LLM Responses 
Options from (A) to (J)

Evaluation Results
String-matching/LLM-judge
Binary correct or wrong

LLM Responses 
Design specifications 
proposed by LLMs

Design
 Extraction

Program-based 
simulation
Domain-specific 
simulations and
obtain performances

Performance Check
Performance check 
against design goals

Evaluation Results
Binary pass/fail
Numerical score 
Evaluation log

Figure 1: Comparison between conventional QA-style benchmarks (left) and the design-style bench-
mark ENGDESIGN (right). Conventional QA benchmarks evaluate LLMs through static answer
extraction and string-matching, while ENGDESIGN involves open-ended design tasks with potentially
non-unique solutions. LLMs must propose candidate design specifications, which are evaluated via
program-based simulations and performance validation pipelines.

• Empirical validation of design competencies. Through large-scale evaluations across92

10+ state-of-the-art LLMs including both general-purpose LLMs and reasoning models,93

we demonstrate ENGDESIGN’s ability to expose critical limitations in AI systems—such94

as over-reliance on textual patterns or failure to handle trade-offs—that are invisible to95

traditional benchmarks.96

We believe that ENGDESIGN marks a crucial milestone toward realizing engineering AGI by breaking97

new ground with its comprehensive coverage of engineering design problems across diverse domains,98

each requiring deep technical expertise and domain-specific simulation tools for rigorous evaluation.99

This benchmark not only measures what models know but what they can actually design, bridging100

the chasm between textbook-level knowledge understanding and practical engineering capability.101

2 ENGDESIGN102

In this section, we introduce ENGDESIGN, a multi-domain benchmark developed to evaluate the103

capabilities of LLMs in real-world engineering design tasks. Unlike conventional QA benchmarks,104

ENGDESIGN adopts a rigorous simulation-based evaluation pipeline to assess model performance in105

practical, design-oriented scenarios. Table 1 summarizes the benchmark’s key statistics: it comprises106

101 design tasks spanning 9 engineering domains, with a total of 473 gradable items. While the task107

distribution may appear uneven, it naturally reflects the domain expertise of our contributors and108

the filtering rigor imposed by our multi-stage review process. Notably, the average prompt length in109

ENGDESIGN is 778.71 tokens, substantially higher than typical QA benchmarks2, highlighting the110

contextual richness and complexity of realistic engineering design problems. Word clouds generated111

from ENGDESIGN prompts are included in Appendix D.112

Among the 101 tasks in ENGDESIGN, 48 tasks require domain-specific scientific software such113

as MATLAB or Cadence for evaluation, while the remaining 53 tasks are fully open-sourced and114

evaluated using manually authored evaluation scripts. We consolidate these tasks into a subset115

called ENGDESIGN-OPEN to support broader community adoption without licensing constraints.116

Additionally, 23 tasks of ENGDESIGN incorporate images as part of the task input to LLMs.117

2We provide token length comparison between ENGDESIGN and other QA benchmarks in Appendix D.1.
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Domain: Control Design (XG_05) Evaluation Pipeline (with MATLAB)

def evaluate_llm_response(llm_response):
# Start MATLAB engine
eng = matlab.engine.start_matlab()
# Get controller coefficients from LLM response
theta = llm_response.config.theta …
den = llm_response.config.den
# Run MATLAB evaluation
passed, eval_details, score = eng.evaluate(theta, tau, num, 

den, nargout=3)
return passed, eval_details, score

function [passed, details, score] = evaluate(theta, tau, 
num, den)
    % Performance check
    s = tf('s’);
    ⋯
    is_stable = all(real(poles) < 0); … 
    S = stepinfo(Tfb);
    ⋯
    [Gm, Pm] = margin(Gp*C);
    Gm_db = 20*log10(Gm); % Convert to dB
    % Compare against performance requirements
    theta_check = abs(theta - desired_theta) <= 2;
    phase_margin_check = (Pm > 60);
    score = ⋯
    % Add evaluation results to details 
end

T

TC

 Stirring
Tank

Steam
Flow

Valve

Heat
Exchanger

Liquid
Inflow

In this task, you are required to design a feedback controller to regulate the temperature of a chemical 
reactor using a heat exchanger system ... 
Task 1
Your first task is to derive a first-order with delay transfer function " # = %!"#/(1 + *#) to model the 
dynamics of the stirred tank … Please determine the value of , and * from the step response figure using 
the given information. 
Task 2
Your second task is to design a feedback controller … that satisfies the following requirements:
- Gain margin: >= 7 dB
- Phase margin: >= 60 degrees …
- Settling time: <= 150 sec (for a step reference input)

Controller Evaluation

Domain: Analog IC-Design (TB_04) Evaluation Pipeline (with SPICE Simulator)

def evaluate_llm_response(llm_response):
# Load netlist from LLM response
netlist = llm_response.config.netlist
# Write netlist to file for evaluation
with open(netlist_path, "w") as fh:

fh.write(netlist)
# Run simulation and get evaluation results …
ok, err = run_autograder(shell_path, "mp3")
…
passed = …
score = …
return passed, details, score

You are asked to design a 5 transistor OTA topology and its bias current circuit in one netlist … The 
testbench is a unity-gain buffer connection (feedback from output -./0 to inverting input vin).
122	 = 	1.4	1, 166	 = 	0	1. Output load: 89	 = 	2	;<	capacitor at -./0 … 
Task: OTA Design
Pass Rule: All MOSFETs must instantiate exactly the foundry models  
tsmc18dP (PMOS) and tsmc 18>? (NMOS).  A Cadence/SPECTRE testbench (differential input OTA, 
89	 = 	2	;<, 122	 = 	1.4	1, 166	 = 	0	1) will be used to verify that your OTA design satisfies the 
specifications list the the following table.

ICMR pass rule:  for VCM ∈ {VSS, VDD}, each point 
must achieve:
fUGF(18F) 	≥ 	50	FIJ,
AV(18F) 	≥ 	M10	 − 	3	>P, and 
CMRR(18F) ≥ CMRR0 − 3	>P, …
<SPICE Template> … </SPICE Template>

Spec Target

DC differential-mode gain AV0 ≥ 	40	>P	
Unity-gain frequency fUGF ≥ 	50	FIJ
Common-mode rejection ratio CMRR ≥ 	80	>P	
Input common-mode range ICMR ≥ 	800	T1 ∗	

#!/bin/bash
# Prompt user for MP number
echo "Enter the MP number (e.g., mp1, mp2, etc.):"
mp_number="${1:-mp3}"
# Load Python3 module
module load python3
… 
# Run Virtuoso
virtuoso -replay "$LOG_DIR/autograde.tcl"
# Wait for Virtuoso to complete
wait
# Find the latest CDS log file after Virtuoso runs
LATEST_LOG=$(ls -t ~/CDS.log* 2>/dev/null | head -n 1)
… 

SPICE
Simulation

function [passed, details, score] = TopOpt_SIMP()
    
    %% Setup Optimization Problem …
    [Node,Element,Supp,Load] = Mesh_Crack(8000);

E0 = 70e3; nu0 = 0.3;      % Material Properties …
    m = @(y,B)MatIntFnc(y,‘SIMP-H1’,[p,B,eta0]);  % SIMP … 

fem = preComputations(fem); % Setup FEA …
    %% Run Optimization
    [z,V,fem,c_hist,v_hist,s_hist] = Main_TO(fem,opt); … 
    v_final = v_hist(end); % volume fraction of design … 
    s_final = s_hist(end)*opt.s_lim; % max. stress in 
design … 
    nel_x = int32((Lx/Ly)*sqrt(fem.NElem/(Lx/Ly)));
    y_hat = 
flipud(reshape(V,int32(fem.NElem/nel_x),nel_x)); % design 
density values … 

Domain: Structure Design (RK_03) Evaluation Pipeline (with MATLAB)

def evaluate_llm_response(llm_response):
# Start MATLAB engine
eng = matlab.engine.start_matlab()
# Load LLM response
vf = float(llm_response.config.VF) … 
# Run MATLAB evaluation
y_hat, s_final, v_final = eng.TopOpt_SIMP(nargout=3)
eng.quit()
# Performance check and scoring
if vf <= v_final: …
return passed, eval_details, score

You are given a square design domain bounded by the vertices (−1,−1), (1,−1), (1,1), and (-1, 1). A sharp 
pre-crack is present in the domain, running vertically from the point (0,0) to (0, 1). Two horizontal loads of 
magnitude 5 are applied at the top corners of the domain:
• A load is applied at (−1,1) in the negative x-direction.
• A load is applied at (1,1) in the positive x-direction.
Solid material parameters are Young's modulus, E = 70000, and Poisson's ratio, nu = 0.3. Assume 
density-based SIMP approach with relative void stiffness factor 1e-8.
The optimization setup includes ... Your task is to:
• Design a structure within the domain that minimizes the maximum local stress while ensuring that 

the volume fraction of material used does not exceed 0.25.
• Once the optimization is complete, report the following numerical values:
        - s_hat: the maximum stress in the optimized design.
        - vf: the volume fraction of the structure, which must lie within the range [0,1].

Topology 
Optimization

Reduction in maximum von Mises stress with progressive evolution of design

Design von Mises stress Design von Mises stress Design von Mises stress

Domain: Computer Architecture Design (DL_01) Evaluation Pipeline (with MQSim Simulator)

def evaluate_llm_response(llm_response):
# Load ground truth obtained via MQSim simulation
ground_truth = json.load(open(ground_truth_file, "r"))
# Check performance for each workload
passed, score, details = False, 0, {}
for i, workload_name in

enumerate(llm_response.config.workload_names):
# Performance check for workload I

# Check performance for each workload
for workload in tuning_result.keys():
⋯

# Scoring the LLM responses based on ground_truth
for name in tuning_result[workload]:

⋯     
return passed, eval_details, score

In this problem, you will finalize a set of Solid-State 
Drive (SSD) designs that meet the performance 
requirements for a specific workload type. Initially, 
you must determine which parameters to tune, and 
to what extent, to satisfy the given performance 
criteria … 
Task Description
SSD customers typically evaluate SSD …  If we want 
to get 20% performance improvement on I/O 
throughput or … Please provide your solution for 
each workload mentioned below:
Real-world Workloads. These workloads represents 
typical storage-intensive application patterns.

Workload Category Description

Big Data Analytics Data center MapReduce workloads .

Cloud Storage Data center cloud storage workloads.

⋯ ⋯
WebSearch WebSearch services trace collected by UMass.

Advertisement         Advertisement workloads running on servers.

SSD Config files

MQSim

{
  "LiveMapsBackEnd": {
    "Data_Cache_Capacity": [
      [Tuning_Result, 
       Goal_Reached_flag,...
      ],
      ...
    ],
    ...
  }
} Performance JSON

MQSim 
simulation

<Execution_Parameter_Set>
    <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

<Execution_Parameter_Set>
    <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

<Execution_Parameter_Set>
    <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

Figure 2: Selected demonstration tasks from ENGDESIGN.
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Table 1: Statistics of ENGDESIGN. Tokens are calculated with Tiktoken using o200k_base encoding.

Engineering Area # of tasks # of gradable items # of query tokens
Max Min Avg

Operating System Design 8 66 2938 310 1103.25
Computer Arch Design 5 20 4385 2348 3539.60
Control Design 18 100 1361 209 634.44
Mechanical Systems 7 32 781 225 391.14
Structure Design 13 25 483 186 345.31
Digital Hardware Design 17 58 1715 206 515.65
Analog IC Design 5 23 2136 547 1196.6
Robotics 10 68 1485 192 771.9
Signal Processing 18 81 2304 151 611.72

Overall 101 473 4385 151 778.71

2.1 Task Structure118

Each task of ENGDESIGN consists of the following four key components:119

1. Task Description. This part is the query prompt fed into the LLMs, offering a clear and detailed120

definition of the engineering design problem, including design objectives, specifications, constraints.121

2. Evaluation Rubrics. Given the complexity of ENGDESIGN tasks, each task is further decomposed122

into multiple gradable items evaluated individually during the performance check stage. The evalua-123

tion rubrics define the assessment criteria and scoring metrics, with a full score of 100. This enables124

models to receive partial credit even if the design does not fully meet all specified requirements.125

3. Evaluation Pipeline. Each task includes automated evaluation scripts that assess the LLMs’126

designs. The evaluation returns a binary pass/fail indicator, a numerical score, and evaluation logs for127

further analysis.128

4. Reference Design. Each task provides a validated reference design that fully satisfies all specified129

requirements, ensuring the feasibility and realism of the design challenge.130

Figure 2 shows four demonstrated design examples from ENGDESIGN including task descriptions131

and evaluation pipelines.132

2.2 Evaluation Pipeline133

Unlike conventional benchmarks, which often have a single golden answer that allows evaluation134

through exact string matching or LLM-as-judge scoring, our engineering design tasks inherently135

lack a unique golden design. For example, there are infinitely many valid controller designs that136

can regulate the temperature of a stirred tank modeled by a first-order system while satisfying137

both time-domain and frequency-domain performance requirements. To address this challenge,138

our benchmark introduces a simulation-based evaluation pipeline. Specifically, for each LLM-139

generated design, we first parse the key design components from the response automatically (such140

as code snippets, key parameters, etc.). These components are then fed into our evaluation pipeline,141

which runs domain-specific simulations to assess the design’s performance against the specified task142

requirements. Guided by a per-task rubric table, the evaluation pipeline outputs three key results: a143

binary pass/fail indicator, a numerical score between 0 and 100, and a detailed log that records the144

evaluation process for further analysis. Below we discuss each step in detail.145

Structured Responses from LLMs. To constrain the output format for a wide range of LLMs and146

ensure compatibility with our evaluation pipeline, we adopt the popular open-source Python library147

instructor [22], which is built on top of Pydantic and facilitates structured LLM responses. By148

defining schema templates that specify expected fields, such as design parameters or code snippets,149

the instructor package enables LLMs to produce outputs in a pre-defined format. We provide an150

example at Figure 10 in Appendix E.2. Specifically, LLMs are instructed to construct their responses151

into two main parts: (1) a reasoning field, which contains the step-by-step reasoning process for152

solving the task, and (2) a ConfigFile class, which summarizes the final design results, including153
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Feedback

Refinement

First-Round Review
• Task Clarity
• Validate Rubrics
• Test Evaluation Code
• Verify Reference Design

AcceptRevise Reject

Second-Round Review
• Done by domain experts
• Check sensibility of approved tasks
• Provide domain-specific refinements

Initial Task Design
• Engineering Domain
• Task Description
• Rubrics Design
• Evaluation Codebase
• Reference Design

LLM Filtering & Pre-test

Result
Analysis

LLM Query & 
Evaluation Final Benchmark

Figure 3: An overview of the construction process of ENGDESIGN, illustrating stages from initial
task design, LLM filtering, and expert review to final benchmark integration, with iterative refinement
and evaluation.

their design choices or code snippets. During evaluation, the fields defined in ConfigFile can be154

automatically parsed to trigger the simulation-based evaluation pipeline.155

Task-Specific Evaluation Pipeline. A simulation-based evaluation pipeline was designed for each156

task. For example, control engineering tasks may evaluate closed-loop dynamics through metrics such157

as rise time, settling time, overshoot, and phase/gain margins via MATLAB. The evaluation pipeline158

outputs three key results: (1) a binary pass/fail indicator for meeting all performance requirements,159

(2) a numerical score (0–100) reflecting fine-grained performance analysis, and (3) an evaluation log160

capturing simulation outputs, performance metrics, or error messages.161

2.3 Construction of ENGDESIGN162

The construction of ENGDESIGN follows a multi-stage process that integrates both automated163

validation and human expertise as shown in Figure 3:164

1. Initial Task Design. We recruited graduate students and researchers from various engineer-165

ing disciplines to contribute initial task proposals, drawing on open-source resources and166

their domain knowledge. Contributors were guided to follow a standardized submission167

format, which includes a task description, evaluation rubric, executable evaluation codebase,168

and a reference solution.169

2. LLM Filtering and Pre-Test. Submitted tasks undergo an initial filtering phase using a170

language model (o4-mini) to assess prompt sufficiency and the functionality of the evaluation171

code. Specifically, we prompt the LLM to classify the task’s engineering domain and172

determine whether the information provided is adequate to solve the problem. If the model173

flags missing or unclear details, we work with the original contributor to address those gaps.174

3. First-Round Review. Tasks that pass the pre-test enter a first-round review involving close175

collaboration between reviewers and the original authors. The review ensures that:176

• The task description is clear, self-contained, and complete.177

• The evaluation rubric is well-defined with partial credit, and aligns with the task goals.178

• The evaluation codebase is executable, robust, and handles typical edge cases.179

• The reference design meets all performance requirements, validating the task feasibility.180

Based on this review, tasks fall into one of three categories: Accept: the task meets181

all requirements and proceeds to expert review; Revise: minor issues are identified and182

addressed in collaboration with the contributor; or Reject: the task is excluded due to critical183

issues such as unfeasibility, triviality, or misalignment with design-oriented evaluation.184

4. Second-Round Review with Domain Experts. Tasks accepted in the first round are185

reviewed by faculty experts in the corresponding engineering domain. These experts assess186

the technical soundness and relevance of each task to ensure it serves as a meaningful187

evaluation of LLMs in realistic design settings.188

5. Final Integration. Tasks that pass both review stages are standardized to match the bench-189

mark’s formatting and structural guidelines, and are formally included in the ENGDESIGN.190
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Table 2: Average pass rate (%) results (each task evaluated over 3 trials). ∗ Model is not multi-
modal and was evaluated only on the text-only subset. We report text-only results for all models in
Appendix E.4. The domain abbreviations are: AICD = Analog Integrated Circuit Design, Arch =
Computer Architecture Design, Ctrl = Control Design, DHD = Digital Hardware Design, Mech =
Mechanical Systems, OS = Operating System Design, Robo = Robotics, SigP = Signal Processing,
Stru = Structure Design. The best results for each column are highlighted in bold.

Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru
Chat Models

GPT-4o 15.68 0.00 20.00 18.52 10.26 0.00 4.17 26.67 17.65 25.64
DeepSeek-v3∗ 17.92 0.00 0.00 27.27 25.64 0.00 0.00 16.67 12.82 38.89
Gemini-2.0-Flash 14.16 0.00 0.00 15.15 16.67 4.76 0.00 20.00 5.13 36.11
Claude-3.7-Sonnet 22.61 0.00 40.00 16.67 33.33 14.29 0.00 33.33 21.57 30.77

Reasoning Models
o1 29.17 0.00 40.00 24.07 41.03 14.29 37.50 50.00 25.49 23.08
o3 34.38 0.00 40.00 35.19 20.51 23.81 25.00 63.33 41.18 30.77
o3-high 33.57 0.00 40.00 27.78 20.51 28.57 30.43 68.97 35.29 41.03
o4-mini 31.60 0.00 33.33 24.07 41.03 19.05 29.17 43.33 33.33 41.03
o4-mini-high 34.04 0.00 40.00 27.78 47.22 19.05 37.50 46.67 35.29 35.90
Gemini-2.5-Pro 29.54 0.00 0.00 33.33 43.59 0.00 9.52 56.67 12.82 50.00
DeepSeek-R1∗ 25.53 0.00 36.36 36.36 38.46 4.76 5.26 26.67 20.51 41.67
Claude-3.7-Thinking 20.07 0.00 33.33 18.52 17.95 9.52 0.00 40.00 19.61 28.21

3 Experiments191

We evaluate a set of representative LLMs on the ENGDESIGN and analyze their performance.192

Evaluated LLMs. For chat models, we include GPT-4o, Claude-3.7-Sonnet, Gemini-2.0-Flash,193

and DeepSeek-v3. For reasoning models, we evaluate o1, o3, o3-high, o4-mini, o4-mini-high,194

Claude-3.7-Thinking, DeepSeek-R1, and Gemini-2.5-Pro.195

Evaluation Metrics. We report three primary evaluation metrics: (1) Average Pass Rate, (2)196

Average Score, and (3) Reasoning Robustness. Each task is evaluated over three independent trials197

per model. To measure reasoning robustness, we compute the ratio between the number of tasks198

where all three trials passed and the number of tasks where at least one trial passed. This ratio, which199

ranges from 0 to 1, serves as a straightforward indicator of an LLM’s reasoning consistency. A value200

closer to 1 indicates higher robustness and more stable reasoning behavior across repeated runs.201

Formal definitions of all evaluation metrics are provided in Appendix E.3.202

3.1 Main Results203

Table 2 presents the average pass rates and average score across evaluated LLMs, across 9 distinct204

engineering design areas. The average score demonstrates a strong correlation with the pass rate,205

which we provided the detailed results in Appendix E.4. We make the following key observations.206

ENGDESIGN presents a highly challenging benchmark, with even the best-performing models207

achieving only modest pass rate. As shown in Table 2, no model surpasses a 35% overall pass rate.208

The top-performing model, o3, achieves 34.38%, while widely-used chat models such as GPT-4o209

and Gemini-2.0-Flash attain around 15%. Analog IC design tasks stands as the most difficult ones210

where all the models got 0% pass rate. These results highlight the difficulty of the benchmark, which211

stems from its requirements for domain-specific expertise, multi-step reasoning, and design trade-off212

considerations, capabilities that go beyond the strengths of current LLMs.213

Reasoning models outperform general-purpose chat models. Models designed with enhanced214

reasoning capabilities, including o3, o4-mini, and DeepSeek-R1, consistently outperform general-215

purpose chat models across most engineering domains. However, this trend does not hold for Claude216

models, where both Claude-3.7-Sonnet and Claude-3.7-Thinking exhibit similar pass rates despite217

their differences in reasoning emphasis.218

Reasoning Models are more robust in general. Figure 4 shows the reasoning robustness of all219

evaluated models. Reasoning-focused models such as o1, o3, and o4-mini-high achieve the highest220
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Figure 4: Reasoning robustness distribution of evaluated LLMs on ENGDESIGN.

robustness scores (0.62, 0.61, and 0.57, respectively), indicating strong consistency across repeated221

trials on tasks they are capable of solving. In contrast, chat-oriented models like Gemini-2.0-flash and222

DeepSeek-v3 exhibit substantially lower robustness (0.20 and 0.35), reflecting less stable reasoning223

behavior. Notably, the gap in reasoning robustness between top-performing reasoning models and224

weaker chat models is more pronounced than in average pass rate as shown in Table 2—up to a225

3× performance difference in robustness compared to a 2× difference in pass rate. This highlights226

robustness as a distinguishing strength of reasoning models.227

Token Consumption. Reasoning models require substantially more compute due to longer inference228

time. We analyze the number of completion tokens generated across different models. As shown229

in Figure 5, the reasoning model (o1) produces significantly more tokens than the non-reasoning230

model (GPT-4o) to achieve performance gains. Optimizing the latency–performance trade-off will be231

essential for making future models more accessible and deployable in real-world engineering design232

scenarios. Additional results are provided in Appendix E.5.233

Figure 5: Average token consumption of evaluated LLMs on ENGDESIGN.

3.2 Iterative Design234

To emulate the workflow of human engineers, we implement an iterative design protocol that allows235

LLMs to refine their solutions based on feedback from previous attempts. In our implementation,236

the LLM is provided with its previous design output along with corresponding evaluation results,237

such as scores, performance metrics, and diagnostic logs, and is then prompted to generate an238

improved design in the subsequent iteration. As shown in the left plot of Figure 6, model performance239

consistently improves with additional iterations. Notably, o3 achieves almost a 60% pass rate after ten240

iterations.3. However, we also observed that iterative design does not help in all cases. For example,241

in Analog IC design tasks, models still fail to meet the requirements even after ten iterations.242

3Due to time and resource constraints, the iterative design protocol was applied to a selected subset (71 tasks)
of ENGDESIGN tasks using four representative models: GPT-4o, o1, o3, and o4-mini. As a result, reported pass

8



computation 
error 
 9.0%

hallucination
12.6%

constraint 
violation

25.2%

domain 
knowledge gap

33.3%

prior knowledge 
overreliance

18.8%

other
0.9%

Figure 6: Left: pass rate of GPT-4o, o1, o3, and o4-mini with the iterative design setup. Right:
distribution of error types for o4-mini on a subset of ENGDESIGN.

3.3 Failure Analysis243

To better understand the limitations of LLMs in engineering design tasks, we define five primary244

error categories observed in ENGDESIGN: Domain Knowledge Error, Constraint Violation Error,245

Prior Knowledge Overreliance, Hallucination, and Computation Error. Formal definitions of246

these error types are provided in Appendix F.247

We analyzed o4-mini’s responses to 70 tasks from ENGDESIGN in which the model failed evaluation,248

and manually annotated each failure with corresponding error types. Given the complexity of249

engineering design tasks, many responses exhibited multiple failure modes; we therefore allowed250

multi-label assignments per task. In total, 111 distinct errors were identified. The right plot of251

Figure 6 summarizes the distribution of error types. Domain knowledge errors (33.3%), constraint252

violations (25.2%), and prior knowledge overreliance (18.8%) collectively account for over 75% of253

all observed failures. This suggests that o4-mini frequently struggles with applying domain-specific254

principles, satisfying task-specific constraints, and generalizing beyond memorized patterns. While255

hallucinations (12.6%) remain a concern, computation errors (9.0%) are less common, indicating256

relatively strong arithmetic and symbolic reasoning capabilities. Additional examples and qualitative257

insights are provided in Appendix F.258

4 Related Work259

Our work relates to the broader field of benchmark design for LLMs, particularly those developed260

to evaluate general reasoning and problem-solving capabilities [23, 9, 24, 25, 12, 8, 10, 26, 27].261

ENGDESIGN also contributes to a growing body of research focused on evaluating LLMs in spe-262

cific engineering domains [15, 28, 29, 30]. Due to space constraints, additional related work is263

discussed in Appendix C. Compared to prior work, ENGDESIGN spans multiple engineering domains264

and introduces a novel evaluation framework that combines generative outputs from LLMs with265

simulation-based evaluation to assess performance in realistic design settings.266

5 Conclusion267

In this work, we introduced ENGDESIGN, a novel benchmark for rigorously evaluating the capabilities268

of LLMs in realistic, multi-domain engineering design scenarios. Our results show that ENGDESIGN269

presents a substantial challenge, even the strongest models achieve only modest performance, under-270

scoring the complexity of real-world engineering tasks. We hope ENGDESIGN serves as a valuable271

benchmark for future research at the intersection of language models and engineering intelligence,272

motivating continued progress toward the development of general-purpose AI engineers.273

rates in the iterative experiments are slightly lower than the ones report in Table 2. Nonetheless, this subset
demonstrates the effectiveness of feedback-driven refinement and highlights the potential of LLMs to improve
design quality through iterative design.
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B Limitations and Broader Impact629

Limitations630

While ENGDESIGN provides a comprehensive benchmark for evaluating LLMs in engineering design631

tasks, some limitations remain:632

1. ENGDESIGN currently covers 9 engineering design domains. Although these are diverse633

and representative, the benchmark does not yet encompass the full breadth of engineering634

disciplines or subfields.635

2. Our evaluation includes a selection of widely used and high-performing LLMs. However, it636

is not exhaustive. Many emerging or smaller-scale models are not included in our evaluation.637

3. We employ the instructor framework to enforce structured output from LLMs. While638

this tool has shown reliable performance throughout our evaluations, there are instances639

where LLMs fail to adhere to the expected output format. As instructor is still under640

active development, future improvements will be necessary to further enhance its robustness641

and compatibility across models.642

Broader Impact643

This work aims to advance our understanding of how LLMs perform in complex, real-world engi-644

neering design scenarios. However, we highlight the following considerations:645

• Not a replacement for human engineers. Our benchmark is intended to assess LLM646

capabilities, not to replace the expertise and judgment of professional engineers. Engineering647

design involves safety-critical decision-making, physical prototyping, and domain-specific648

knowledge that current LLMs cannot fully replicate.649

• Supporting real-world design workflows. We hope that LLMs, when properly evaluated650

and deployed, can assist engineers by automating routine tasks, enhancing ideation, and651

accelerating early-stage design processes—particularly in settings with limited access to652

expert resources.653

• Need for rigorous safety checks. Any LLM-generated design, particularly those intended654

for deployment in safety-critical domains such as aerospace, biomedical devices, civil infras-655

tructure, or autonomous systems, must undergo thorough validation and safety assessment656

by qualified human experts before real-world application.657

• Ethical use and accessibility. Care must be taken to ensure that advances in AI-assisted658

engineering design benefit a broad and diverse community. Efforts should be made to avoid659

misuse, bias amplification, or overreliance on unverified outputs.660
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C More on Related Work661

Large Language Models. Recent advances in large language models (LLMs) have been driven662

by scaling, instruction tuning, and improvements in reasoning. Models such as GPT-3 and GPT-663

4 [31, 32] have demonstrated strong general capabilities. Proprietary models including Anthropic’s664

Claude [33], Google’s Gemini [34], and DeepSeek [35] show competitive results across a wide range665

of benchmarks.666

Recent research has focused on enhancing the reasoning capabilities of LLMs through architectural667

innovations, training paradigms, and inference-time prompting strategies. Techniques such as Chain-668

of-Thought prompting [36] and least-to-most prompting [37] have demonstrated that reasoning669

performance can be significantly improved through intermediate step decomposition. These advances670

have led to the development of a new generation of reasoning-focused models, including the o-series671

from OpenAI [38], Claude models with "thinking" mode [39], Gemini 2.5 Pro [40], and DeepSeek-672

R1 [41], all of which achieve strong results on standard benchmarks. However, their effectiveness673

in domain-specific applications, such as engineering design, remains underexplored. ENGDESIGN674

addresses this gap by evaluating both general-purpose and reasoning-specialized LLMs in realistic,675

simulation-based engineering workflows.676

General Purpose Benchmarks for LLMs. Numerous benchmarks have been developed to eval-677

uate the general reasoning and problem-solving capabilities of LLMs. Notable examples include678

MMLU [23] and MMLU-Pro [9], which assess knowledge across a wide range of subjects; GAIA [24],679

which focuses on long-context retrieval and reasoning; and HLE [25], which introduces highly chal-680

lenging questions spanning diverse domains. HumanEval [12] evaluates the functional correctness681

of LLM-generated code, while GPQA [8] targets graduate-level physics and science problems.682

GSM8k [26] emphasizes grade-school math word problems to test arithmetic and reasoning. More683

recently, DynaMath [11] proposes a dynamic visual math benchmark that evaluates LLM robust-684

ness across varied visual and numeric transformations, and PaperBench [27] offers paper-based685

reproduction tasks to assess complex agentic workflows.686

LLMs in Engineering and Scientific Domains. Recent studies have started to explore the ap-687

plicability of LLMs to engineering contexts. For example, [28, 15, 42, 43, 44, 45, 46] evaluate688

LLMs across engineering subfields using curated QA datasets. However, these efforts only focuses689

one specific domain or largely focus on factual recall rather than generative design capabilities.690

Several domain-specific studies examine LLM-assisted design workflows. For example, ControlA-691

gent [29] integrates control theory solvers for automated controller design, while AnalogCoder [30]692

and SPICED [47] target analog circuit and SoC design using prompt engineering and retrieval-based693

techniques. Retrieval-augmented and programmatic strategies have also been explored to enhance694

LLM performance [48, 49]. Other studies examine LLMs in mechanical design [50], cross-domain695

creativity [51], and computational engineering [52, 53, 54, 55].696

D More on ENGDESIGN697

D.1 Prompt Token Length Comparison698

Table 3 reports the average number of tokens in the input prompts for various benchmarks, measured699

using the o200k_base tokenizer. Notably, ENGDESIGN exhibits significantly longer prompts700

(averaging 778.71 tokens) compared to other popular QA-style benchmarks such as MMLU-Pro701

(61.76), HLE (250.03), and GSM8K (58.46). This reflects the greater contextual and structural702

complexity involved in realistic engineering design tasks, which often require extensive problem703

descriptions and domain-specific constraints.704

Table 3: Average token counts across different benchmarks using the o200k_base tokenizer.
Benchmark MMLU-Pro HLE SuperGPQA DynaMATH GSM8K EngDesign
Average Token # 61.76 250.03 57.89 27.83 58.46 778.71
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D.2 More on construction of ENGDESIGN705

As described in Section 2.3, the development of ENGDESIGN follows a rigorous multi-stage process,706

including initial task design and two rounds of review to ensure task quality and relevance. During707

the initial stage, over 40 task contributors submitted a total of 186 task proposals. Following thorough708

evaluation and revision across the two review phases, 101 tasks were accepted for inclusion in709

ENGDESIGN, while the remaining 85 were discarded due to various issues such as insufficient clarity,710

infeasibility, or misalignment with the benchmark’s design-oriented goals.711

D.3 Word Clouds of ENGDESIGN712

Figure 7 and Figure 8 present the word clouds of the most frequently occurring terms across all713

prompts and within each domain, respectively. These visualizations underscore the benchmark’s714

emphasis on design-specific vocabulary and highlight the diversity of engineering contexts it encom-715

passes.716

Figure 7: Word Cloud of the overall ENGDESIGN Prompts.

E More on Evaluation717

Figure 9 illustrates the benchmarking pipeline for evaluating LLMs on engineering design tasks. In718

this section, we provide more details on the evalutions of ENGDESIGN.719

E.1 Detailed Experimental Setup720

We use the default configuration for each LLM during evaluation. Table 4 provides detailed informa-721

tion on the model names, setup parameters, and special configurations used for each model.722

All evaluations in this work were conducted via API access to proprietary LLMs (e.g., OpenAI,723

Anthropic, Google, and DeepSeek). As a result, the computational burden on our end was minimal,724

with no need for local GPU infrastructure. The primary cost was associated with inference-time API725

usage, which varies depending on the model types and token numbers. Since we did not perform726

model training or fine-tuning, the overall computational footprint of our study remains low.727

E.2 LLM Response Structure728

As discussed in Section 2.2, we use instructor to construct LLM responses by defining a response729

structure class, as illustrated in Figure 10. For each task, the response structure class includes two730

keys: reasoning and config. The reasoning component prompts the LLM to perform a detailed731

step-by-step reasoning process to complete the task. The config component defines a task-specific732
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(a) Analog integrated circuit design. (b) Control Design (c) Robotics

(d) Structure Design (e) Signal Processing (f) Mechanical Systems

(g) Digital Hardware Design (h) Operating System Design (i) Computer Architecture Design

Figure 8: Word clouds of ENGDESIGN for each engineering domain.
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Large Language Models (LLMs)Task Description
Input prompt to LLMs including problem 
statement, design tasks, requirements, and 
output formats.

Evaluation PipelineResults

Pass/Fail Score (0 to 100) Eval Log Code Scientific Software Rubrics

Figure 9: Overview of the ENGDESIGN Benchmarking Pipeline. The process begins with a task
description curated by task contributors (Step 1). This prompt is then submitted to various LLMs (e.g.,
GPT, Claude, Gemini, DeepSeek) to generate candidate design proposals (Step 2). The generated
outputs are evaluated using an automated codebase that includes code execution, integration with
scientific software (e.g., MATLAB, Webots), and standardized scoring rubrics (Step 3). Finally, the
results, including pass/fail status, quantitative scores, and detailed evaluation logs, are recorded for
further analysis (Step 4).

Table 4: Model names and configuration details for each evaluated LLM.
Model Model Pointer & Setup
GPT-4o gpt-4o-2024-08-06

o1 o1-2024-12-17

o3 o3-2025-04-16, reasoning effort: medium/high

o4-mini o4-mini-2025-04-16, reasoning effort: medium/high

Claude-3.7-Sonnet claude-3-7-sonnet-20250219

Claude-3.7-Thinking claude-3-7-sonnet-20250219, thinking token budget: 16,000

Gemini-2.0-Flash gemini-1.5-pro

Gemini-2.5-Pro gemini-2.5-pro-preview-03-25

DeepSeek-v3 DeepSeek-V3

DeepSeek-R1 DeepSeek-R1

ConfigFile class, which guides the LLM to produce key design components in a predefined format.733

This structured output facilitates automated evaluation by making it easy to parse LLMs’ design734

choices or code snippets.735

E.3 More on Evaluation Metrics736

We evaluate model performance using three metrics: Average Pass Rate, Average Score, and Average737

Response Length. Each task is tested over N (N = 3) independent trials per model. For each metric,738

we aggregate at the task level and then summarize across all tasks to ensure equal weighting.739

Average Pass Rate For each task i, we define the pass rate as:740

pass_ratei =
number of successful trials

N

The overall pass rate is then computed as the mean of per-task pass rates:741

µpass =
1

N

N∑
i=1

pass_ratei
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import instructor
from pydantic import BaseModel, Field

class ConfigFile(BaseModel):
theta: float = Field(description="The value of theta")
tau: float = Field(description="The value of tau")
num: list[float] = Field(description="The numerator of the transfer function of the 

controller")
den: list[float] = Field(description="The denominator of the transfer function of the 

controller")

# Define your desired output structure
class Response_structure(BaseModel):

reasoning: str = Field(..., description="Detailed reasoning process to accomplish the 
task, please solve all the tasks step by step")

config: ConfigFile

Figure 10: An example of response structure class for instructor (Task XG_05).

We report µpass along with its standard deviation across tasks:742

σpass =

√√√√ 1

N − 1

N∑
i=1

(pass_ratei − µpass)2

Average Score For each task i, the score is averaged over N trials:743

scorei =
1

N

3∑
j=1

xi,j

where xi,j is the score in trial j. The overall score is the mean of per-task scores:744

µscore =
1

N

N∑
i=1

scorei

with corresponding standard deviation:745

σscore =

√√√√ 1

N − 1

N∑
i=1

(scorei − µscore)2

Reasoning Robustness Let T denote the set of all evaluated tasks. For a given model, each task746

t ∈ T is evaluated over N independent trials. Define:747

• Nall: the number of tasks for which all N trials passed, and748

• Nany: the number of tasks for which at least one trial passed.749

Then, the Reasoning Robustness R ∈ [0, 1] is defined as:750

R =
Nall

Nany

This metric quantifies the model’s consistency in reasoning. A value of R = 1 indicates perfect751

robustness. In other words, whenever a task is solvable by the model, it succeeds consistently across752

all trials. On the other hand, lower values indicate higher variance or instability in the model’s753

reasoning process across repeated attempts.754
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Figure 11: Average Score of evaluted LLMs on ENGDESIGN.

Table 5: Average score results (each task evaluated over 3 trials) under different domains.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 36.74 25.71 18.15 35.30 41.69 29.05 26.33 55.80 41.45 34.60
DeepSeek-v3* 35.97 17.33 0.00 45.58 39.67 24.05 25.94 48.47 34.55 38.68
Gemini-2.0-Flash 33.59 7.00 0.00 39.45 38.25 27.14 28.15 53.47 30.03 31.51
Claude-3.7-Sonnet 41.14 31.00 23.79 43.94 46.03 30.24 29.55 58.97 44.90 37.11

Reasoning Models
o1 48.52 19.00 49.09 47.48 63.28 40.48 58.35 57.22 52.61 32.57
o3 48.98 20.33 35.82 59.37 28.82 40.24 54.52 70.13 57.44 44.77
o3-high 49.46 20.33 32.80 53.19 33.36 45.24 65.59 73.67 53.51 47.48
o4-mini 47.30 11.00 25.72 48.80 57.36 35.00 56.90 61.38 51.28 42.07
o4-mini-high 49.88 12.67 36.97 54.87 64.28 36.43 63.96 56.72 48.45 44.15
Gemini-2.5-Pro 48.25 31.00 0.00 53.70 58.05 29.05 44.05 62.43 39.63 55.02
DeepSeek-R1* 44.71 22.00 0.00 56.27 54.38 26.19 37.26 53.82 48.08 40.31
Claude-3.7-Thinking 39.75 22.67 26.02 43.87 29.59 37.62 28.25 59.38 45.58 40.39

E.4 Additional Evaluation Results755

In this section, we present additional evaluation results. Table 5 provide the average score results of756

evaluated LLMs on ENGDESIGN.757

Figure 11 presents the average score distribution across all evaluated models. The overall ranking is758

consistent with the pass rate results in Table 2, with reasoning-focused models such as o4-mini-high,759

o3-high, and o3 achieving the highest scores. Notably, the score differences are less pronounced than760

the corresponding differences in pass rates, suggesting that while these models may not consistently761

meet strict pass criteria, they still generate partially correct or near-complete solutions that earn762

substantial credit. In addition, Table 6 and Table 7 show the average pass and score for text-only763

tasks. Table 8 and Table 9 present the evaluation results for ENGDESIGN-OPEN. Finally, we provide764

the results with error bar in Table 10 and Table 11.765

E.5 Token Consumption766

Figure 12 to Figure 15 show the token consumption for the evaluated LLMs under 9 topics within767

ENGDESIGN.768

E.6 Prompt769

In this section, we provide the LLMs prompts we used for task filtering (the second stage of770

ENGDESIGN Section 2.3) and iterative design (Section 3.2).771
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Table 6: Average pass rate (%) results (text-only tasks).
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 14.98 0.00 20.00 20.83 10.26 0.00 4.17 26.67 16.67 27.78
DeepSeek-v3∗ 18.42 0.00 0.00 33.33 25.64 0.00 0.00 16.67 13.89 38.89
Gemini-2.0-Flash 13.12 0.00 0.00 4.17 16.67 4.76 0.00 20.00 5.56 36.11
Claude-3.7-Sonnet 21.97 0.00 40.00 25.00 33.33 14.29 0.00 33.33 13.89 33.33

Reasoning Models
o1 28.95 0.00 40.00 25.00 41.03 14.29 37.50 50.00 22.22 25.00
o3 34.38 0.00 40.00 20.51 20.51 23.81 25.00 63.33 41.67 41.67
o3-high 34.51 0.00 40.00 33.33 20.51 28.57 30.43 68.97 36.11 44.44
o4-mini 31.58 0.00 33.33 20.83 41.03 19.05 29.17 43.33 30.56 44.44
o4-mini-high 33.78 0.00 40.00 20.83 47.22 19.05 37.50 46.67 36.11 38.89
Gemini-2.5-Pro 28.89 0.00 0.00 25.00 43.59 0.00 9.52 56.67 13.89 50.00
DeepSeek-R1∗ 23.77 0.00 36.36 20.83 38.46 4.76 5.26 26.67 22.22 41.67
Claude-3.7-Thinking 18.30 0.00 33.33 20.83 17.95 9.52 0.00 40.00 11.11 30.56

Table 7: Average score results (text-only results).
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 37.57 25.71 0.00 43.75 41.69 29.05 26.33 55.80 36.59 34.98
DeepSeek-v3* 37.20 17.33 0.00 60.17 39.67 24.05 25.94 48.47 34.93 38.68
Gemini-2.0-Flash 33.87 7.00 0.00 42.58 38.25 27.14 28.15 53.47 30.86 31.51
Claude-3.7-Sonnet 41.39 31.00 0.00 48.54 46.03 30.24 29.55 58.97 42.54 37.70

Reasoning Models
o1 48.94 19.00 0.00 53.92 63.28 40.48 58.35 57.22 54.59 32.79
o3 48.02 20.33 0.00 60.58 28.82 40.24 54.52 70.13 59.76 46.00
o3-high 50.39 20.33 0.00 58.08 33.36 45.24 65.59 73.67 56.44 48.93
o4-mini 48.18 11.00 0.00 50.04 57.36 35.00 56.90 61.38 52.46 43.08
o4-mini-high 49.76 12.67 0.00 49.96 64.28 36.43 63.96 56.72 51.65 45.30
Gemini-2.5-Pro 48.33 31.00 0.00 50.50 58.05 29.05 44.05 62.43 42.93 55.02
DeepSeek-R1* 44.24 22.00 0.00 53.21 54.38 26.19 37.26 53.82 50.42 40.31
Claude-3.7-Thinking 39.47 22.67 0.00 47.71 29.59 37.62 28.25 59.38 43.92 41.25

Table 8: Average pass rate (%) results for ENGDESIGN-OPEN.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 14.74 N/A 20.00 16.67 11.11 0.00 4.17 29.63 20.00 0.00
DeepSeek-v3∗ 8.94 N/A 0.00 N/A 14.81 0.00 0.00 18.52 8.33 N/A
Gemini-2.0-Flash 10.34 N/A 0.00 0.00 12.50 5.56 0.00 22.22 8.33 0.00
Claude-3.7-Sonnet 22.52 N/A 40.00 8.33 29.17 16.67 0.00 37.04 23.33 0.00

Reasoning Models
o1 36.54 N/A 40.00 0.00 48.15 16.67 37.50 55.56 36.67 0.00
o3 35.90 N/A 40.00 0.00 7.41 27.78 25.00 70.37 60.00 0.00
o3-high 36.77 N/A 40.00 0.00 11.11 33.33 30.43 74.07 50.00 0.00
o4-mini 36.54 N/A 33.33 0.00 48.15 22.22 29.17 48.15 50.00 0.00
o4-mini-high 40.52 N/A 40.00 0.00 58.33 22.22 37.50 51.85 50.00 0.00
Gemini-2.5-Pro 30.00 N/A 0.00 0.00 44.44 0.00 9.52 62.96 20.83 0.00
DeepSeek-R1∗ 22.03 N/A 0.00 N/A 44.44 5.56 5.26 29.63 16.67 N/A
Claude-3.7-Thinking 19.74 N/A 33.33 0.00 7.41 11.11 0.00 44.44 30.00 0.00
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Table 9: Average score results for ENGDESIGN-OPEN.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 36.03 N/A 18.15 47.00 26.85 29.44 26.33 62.00 37.79 30.00
DeepSeek-v3* 31.50 N/A 0.00 N/A 20.37 28.06 25.94 53.85 30.94 N/A
Gemini-2.0-Flash 34.74 N/A 0.00 35.00 17.50 31.67 28.15 59.41 36.36 30.00
Claude-3.7-Sonnet 38.71 N/A 23.79 46.00 29.17 35.28 29.55 65.52 36.41 30.00

Reasoning Models
o1 51.64 N/A 49.09 42.67 57.04 35.00 58.35 63.57 47.70 30.00
o3 47.48 N/A 35.82 41.33 7.41 41.39 54.52 77.93 64.18 30.00
o3-high 49.61 N/A 32.80 47.17 13.33 45.00 65.59 79.13 57.54 30.00
o4-mini 52.08 N/A 25.72 47.17 50.37 40.83 56.90 68.20 59.37 30.00
o4-mini-high 54.02 N/A 36.97 46.33 59.58 42.50 63.96 63.02 54.46 30.00
Gemini-2.5-Pro 47.88 N/A 0.00 46.00 47.78 30.56 44.05 69.37 46.13 30.00
DeepSeek-R1* 45.66 N/A 0.00 N/A 48.15 30.56 37.26 59.80 50.62 N/A
Claude-3.7-Thinking 34.74 N/A 26.02 37.67 7.41 35.00 28.25 65.98 39.07 30.00

Figure 12: Average token consumption of Claude models on ENGDESIGN.

Figure 13: Average token consumption of Gemini models on ENGDESIGN.

Figure 14: Average token consumption of DeepSeek models on ENGDESIGN.
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Figure 15: Average token consumption of OpenAI models on ENGDESIGN.

LLM Prompt for Initial Filtering (o4-mini)

Please review the following engineering design task description and provide:
Engineering Domain: Identify the overarching engineering field. Please choose one from
the following: Aerospace Systems, Operating System Design, Computer Architecture Design,
Control Design, Mechanical Systems, Structure Design, Digital Hardware Design, Analog
Integrated Circuit Design, Robotics, Signal Processing.
Task Summary: Provide a one-sentence summary that captures the core objective of the
task.
Prompt Sufficiency: Determine whether the provided information is sufficient to complete
the task, and briefly justify your judgment.
Here is the task description: {task description}.
Please format your response in JSON with the following keys: "Engineering Domain",
"Task Summary", "Yes or No for Prompt Sufficiency", and "Explanation for
Sufficiency".

772

LLM Prompt for Iterative Design

Task Description: {original task description}
773
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Previous Responses: {previous responses}

Evaluation Feedback: {previous evaluation results}

Please review the feedback above and propose an improved solution based on the evaluation
results.

774

F More on Failure Analysis775

To better understand the limitations of LLMs in engineering design tasks, we define five primary776

error types observed in ENGDESIGN:777

1. Domain Knowledge Error. The model lacks essential engineering knowledge required to778

interpret or solve the task correctly.779

2. Constraint Violation Error. The model generates designs that violate explicitly stated780

constraints, such as structural limits, performance bounds, or budgetary requirements.781

3. Prior Knowledge Overreliance. The model applies memorized patterns or textbook solu-782

tions without adapting them to the specific requirements of the task, resulting in suboptimal783

or invalid outputs.784

4. Hallucination. The model fabricates content—such as equations, parameters, or de-785

signs—that is unsupported by the task description or domain knowledge.786

5. Computation Error. The model performs arithmetic or symbolic computations incorrectly787

despite correct methodological reasoning.788

Below, we present examples of LLM failures along with detailed analyses of their underlying causes.789

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error

Task_id
XG_12

Topic
Control Design

Task Description.
Consider the following plant with a resonance:

G(s) =
0.5

s

169

s2 + 0.26s+ 169
,

This plant has a resonance around 13 rad/sec. Assuming the desired loop bandwidth is
ωL = 3 rad/sec. An initial loop shaping controller using controller gain and integral boost is
given as: - gain: Kg = 1

|G(jωL)| , - integral boost: Ki(s) =
βbs+ωL

s
√

β2
b+1

with βb =
√
10. And

the initial loop shaping controller is:

C(s) = Kg ·Ki(s)

Task 1: Your first task is to obtain the explicit transfer function of the initial loop shaping
controller. Please provide the complete transfer function of C(s) as part of your response in
the form of numerator and denominator coefficients.
Task 2: ...

LLM Response (o4-mini)
Step 1: Compute |G(jωL)| at ωL = 3 rad/sec for G(s) = 0.5

s
169

s2+0.26s+169 . At s = j3,
s2 + 0.26s + 169 = −9 + j · 0.78 + 169 = 160 + j0.78, |160 + j0.78| ≈ 160.0. Then
|G(j3)| = 84.5/(3 · 160) = 84.5/480 ≈ 0.176. Hence controller gain Kg = 1/0.176 ≈
5.68.

790
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Step 2: Form the integral boost Ki(s) = (βbs + ωL)/(s ·
√
(β2

b + 1)), with βb =
√
10 ≈

3.1623,
√

(β2
b + 1) =

√
11 ≈ 3.3166, ωL = 3. Ki(s) = (3.1623s+ 3)/(3.3166s).

Step 3: C(s) = Kg · Ki(s) = 5.68 · (3.1623s + 3)/(3.3166s). Multiply out numerator:
[5.68 · 3.1623, 5.68 · 3] ≈ [17.96, 17.04]; denominator [3.3166, 0]. Normalize by dividing
numerator and denominator by 3.3166 to get a monic s-term in the denominator: C(s) =
(5.414s+ 5.137)/s, so coefficients: C_num=[5.414,5.137], C_den=[1,0].

Analysis
For Task 1, the model correctly computes |G(jωL)|, derives the integral boost Ki(s), and
forms the initial controller C(s) by combining Kg and Ki(s). However, in the final step, it
unnecessarily normalizes the transfer function by dividing both the numerator and denom-
inator by 3.3166 to make the denominator monic. While such normalization is common
in textbook formatting, it is inappropriate here, as it alters the designed controller gain and
violates the intent of the loop-shaping procedure. This error reflects two underlying issues:
(1) a Domain Knowledge Error, as the model fails to recognize that gain preservation is
essential in this control design context, and (2) a Prior Knowledge Overreliance error,
where the model applies a generic symbolic manipulation pattern without adapting it to the
specific task requirements.

791

Failure Type: Hallucination

Task_id
YX_01

Topic
Robotics

Task Description.
You are given a 2D sparse costmap. Below is the detailed data for the 2D costmap: ...
Task 1: ...
Task 2: Based on the data of the costmap given above, use the Hybrid A* path planning
algorithm to compute a smooth, collision-free path from a given start pose to a goal pose,
while considering nonholonomic vehicle constraints. You need to compute and return the
path length for Task 2.
Please follow these specifications:
- Set the state space bounds to match the costmap limits: x from −100 to 100, y from −100
to 100, and orientation θ from 0 to 2π radians.
- Use the Hybrid A* planner for path computation.
- The vehicle has the following motion constraints:

- The minimum turning radius is 8.
- The motion primitive length is 10.

- The start pose is: (32.5, 27.5, π).
- The goal pose is: (−15, 12, π/2).
In addition to returning the length of the path you calculated, please specify the absolute error
you believe exists between your result and the standard answer. Retain two decimal places.
Round your result instead of truncating.
Task 3: ...

LLM Response (o4-mini)
We plan a Hybrid A* path from start (32.5, 27.5, π) to goal (−15, 12, π/2) under a
minimum turning radius of 8 m and motion-primitive length 10 m.

• The straight-line (Euclidean) distance is:√
(32.5− (−15))2 + (27.5− 12)2 ≈ 49.96 m

792

30



• Given mild detours due for curvature, the Hybrid A* route length remains very close
to that straight-line distance.

We therefore take the path length ≈ 49.96 m.
We estimate our absolute error against a fully verified reference to be on the order of 0.05 m.

Analysis
For Task 2, we have provided detailed information of the 2D sparse costmap in the prompt,
hoping the model can identify obstacle information on the map and find the shortest collision-
free path based on the Hybrid A* algorithm. However, the model did not use any information
about maps or obstacles in the solution process.
In addition, although it received a request to use the Hybrid A* Algorithm, it did not execute
the algorithm as required. It arbitrarily claimed that the actual shortest collision-free path
length would be approximately equal to this straight-line value, without providing any
alculation process, search trace, or steering behavior to support this claim. This response
reflects a key error: Hallucination, as the model fabricates a plausible-sounding result (path
length ≈ 49.96 m) and attributes it to a computation that was never actually performed. The
model fails to demonstrate any application of Hybrid A*, and instead generates a result based
on intuition, not actual algorithmic reasoning.
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Failure Type: Constraint Violation Error, Domain Knowledge Error

Task_id
XY_04

Topic
Digital Hardware Design

Task Description.
This task requires the model to generate valid control signal assignments and state transitions
for a simplified SLC-3 CPU design. The instructions include arithmetic operations (e.g.,
ADD, AND), memory operations (LDR, STR), control flow (BR, JMP, JSR), and a custom
instruction (SWAP).
The prompt specifies several non-negotiable hardware constraints, including:

• LDR must update condition codes (ld_cc = 1).
• JSR must save the return address via ld_reg = 1.
• Memory instructions must include the complete FSM sequence of address calcula-

tion, data preparation, and return to s_18.
• All instructions must return to s_18 to maintain state consistency.
• No simultaneous bus drivers — only one of gateALU or gateMDR may be high.

LLM Response (o4-mini)
The model provides control signals and state transitions for each instruction. However, several
violations of mandatory constraints are observed:

• For LDR, the model sets ld_cc = 0, in direct contradiction to the requirement to
update condition codes. This is a hard constraint, not an interpretation.

• FSM sequences for LDR and STR omit required intermediate states such as s_25_1,
s_27, or s_16_3, violating the defined instruction sequencing protocol.

• Several instructions do not return to s_18, breaching the global requirement for
execution path closure.

• Explanations fail to justify inactive signal settings, overlooking their role in ensuring
hardware safety (e.g., avoiding bus contention).
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Analysis
This submission violates explicit constraints clearly stated in the prompt. The most critical
one is the incorrect setting of ld_cc = 0 for LDR, despite the rubric’s requirement that
condition codes must be updated after memory loads. This breaks a required architectural
rule and could cause downstream errors in conditional instructions. The model also exhibits
a domain knowledge error by omitting required state transitions for memory operations.
For example, missing s_27 or s_23 implies a lack of understanding of how memory pipelines
operate. Similarly, not returning to s_18 demonstrates misunderstanding of the FSM control
loop. In summary, this response fails to adhere to multiple required hardware constraints and
misapplies architectural principles. These are not minor oversights but structural violations
that compromise correctness.
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Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint
Violation Error & Hallucination

Task_id
ZH_03

Topic
Robotics

Task Description
You are tasked with designing a wheel-motor-gear system for a lightweight electric ground
robot. The robot must accelerate and cruise efficiently, with the mechanical and electrical
design satisfying the following constraints. Your goal is to determine a feasible set of design
parameters for:

• Gear ratio r

• Wheel diameter d (in meters)
• Battery capacity C (in Wh)
• Robot mass m (in kg)

These four parameters must satisfy all of the following performance constraints:
• The robot must reach a top linear velocity of at least 3.0 m/s
• The robot must be able to climb a 10-degree incline
• The battery must support at least 30 minutes of level cruising at 2.5 m/s average

speed without recharging
The robot has the following physical characteristics:

• Motor voltage: 24 V
• Max torque: 0.3 Nm at 4000 rpm
• Motor efficiency: 80%
• Rolling resistance coefficient: 0.015
• Robot cross-sectional area: 0.05 m2

• Gravitational acceleration: g = 9.81 m/s2

Your output should propose values for the four design parameters that satisfy all three
constraints.

LLM Response (o4-mini)
1. Wheel Size and Torque Requirement on a 10° Incline

• For a wheel diameter d = 0.15 m, the wheel radius is rw = 0.075 m.
• On a 10◦ incline, the gravitational force component is:

Fg = m · g · sin(10◦)
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• Rolling resistance is:
Frr = m · g · Crr

• Aerodynamic drag at the climb speed (∼ 3 m/s) is negligible (∼ 0.28 N).
• Total resistive force is approximated as:

Ftotal ≈ m · 9.81 · 0.1736 +m · 9.81 · 0.015 + 0.28

• Mechanical power required to climb at 3 m/s:

Pmech = Ftotal · 3

• Required wheel torque:
Twheel = Ftotal · rw

2. Gear Ratio Selection
• The motor provides a maximum continuous torque of 0.3 Nm at up to 4000

rpm.
• To keep motor rpm ≤ 4000 at v = 3 m/s:

Wheel rpm =
3

0.075
· 60
2π

≈ 382 rpm

• Gear ratio:
r =

ωmotor

ωwheel
≈ 3056

382
≈ 8

• Required torque:

Twheel ≈ (m · 9.81 · 0.1736 +m · 9.81 · 0.015 + 0.28) · 0.075
For m = 15 kg, this gives ≈ 2.1 Nm.

• Motor output torque with gear ratio:

0.3 · 8 = 2.4 Nm

which provides sufficient margin.
3. Top Speed Check

• At motor free speed (∼ 4000 rpm), the wheel rpm is:

4000

8
= 500 rpm

• Resulting linear speed:

v =
500 · 2π · 0.075

60
≈ 3.9 m/s > 3.0 m/s requirement

4. Cruise Energy for 30 Minutes at 2.5 m/s
• Rolling resistance:

Frr = 15 · 9.81 · 0.015 ≈ 2.2 N

• Drag force ≈ 0.19 N; total resistance ≈ 2.4 N.
• Mechanical power:

Pmech = 2.4 · 2.5 ≈ 6 W

• With motor efficiency η = 80%:

Pelec =
6

0.8
≈ 7.5 W

• Energy required for 30 minutes:

E = 7.5 · 0.5 = 3.75 Wh
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• Chosen battery capacity: C = 10 Wh (provides sufficient margin).
5. Summary of Chosen Parameters

• Gear ratio: r = 8 : 1

• Wheel diameter: d = 0.15 m
• Robot mass: m = 15 kg
• Battery capacity: C = 10 Wh

All three constraints are satisfied with these values:
• Top speed ≥ 3 m/s
• 10° incline climb at 3 m/s
• 30-minute cruise at 2.5 m/s

Analysis
In this task, it is noted first that the model took aerodynamic drag force into consideration,
which should not be done as we did not give the relevant coefficient in the prompt. However,
the model still applied a 0.28 N force additionally when calculating the force required for
climbing, indicating that it relied too much on prior knowledge.
What’s more, although the rolling resistance formula is correct, the force Crr should be the
gravitational force projected on the slope (with a cosine scaler) instead of the gravitational
force itself, exhibiting an error of fundamental domain knowledge.
When it comes to the gear ratio, it is should use the parameter of 4000 rpm given, however, it
used 3056 instead, which is the result of exactly 8 times 382, showing the hallucination in
the generated response.
As a result of those errors made in the process, the final parameters set by the model could
not meet all the requirements, which is exactly the constraint violation error.
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Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint
Violation Error

Task_id
TB_02

Topic
Analog Integrated Circuit Design

Task Description
You are asked to design a Folded cascode OTA topology including the Folded cascode OTA
and its bias current. The output should be the same format as the <TEMPLATE> provided
under. Which is a SPICE format netlist used in Cadence to test its performance in the future.
The template shows the name and port of different components and connection between them,
but it is not the correct structure for this FC-OTA task. You should create a different netlist to
solve this problem.

Testbench Configuration: The testbench is a unity-gain buffer connection (feedback from
output vout to inverting input vin).

• VDD = 1.4 V
• VSS = 0 V
• Output load: CL = 1 pF capacitor at vout
• A DC current source IB = 10 µA is connected to the OTA’s bias input ibn10u
• A small-signal AC source VSTB is applied to vin for AC analysis
• A DC voltage sweep (Vstep + VCM) is used at vip to verify input common-mode

range (ICMR)

Task - Device Sizing & Circuit topology design
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Process Rule: All MOSFETs must instantiate exactly the foundry models tsmc18dP (PMOS)
and tsmc18dN (NMOS). A Cadence/SPECTRE testbench (unity-gain buffer configuration
with CL = 1pF, VDD = 1.4V, and VCM = 600mV) will be used to verify your design.
Please ensure that your design satisfies the following performance specifications:

• DC gain AV 0 ≥ 60 dB

• Unity-gain frequency fUGF ≥ 50MHz

• Phase margin (PM) ≥ 60◦

• DC input-to-output error |vip,DC − vout,DC| ≤ 0.6mV

• Total DC current ≤ 150µA

• Input common-mode range (ICMR)* ≥ 600mV

*ICMR pass rule: For VCM ∈ {VSS , VSS + 25mV, . . . , VDD − 25mV}, each test point
must achieve:

• AV 0 ≥ 50 dB

• fUGF ≥ 40MHz

• Phase margin ≥ 45◦

• |vip,DC − vout,DC| ≤ 1.8mV

<SPICE TEMPLATE> ... </SPICE TEMPLATE>

LLM Response (o4-mini)
We need to produce a Spectre netlist for a folded-cascode OTA called fc_ota that exactly
matches the user’s template. That means:

1. Keep the header comments verbatim.
2. Use subckt fc_ota VDD VSS ibn10u vin vip vout with no leading dot.
3. Include a folded-cascode topology sized for ∼ 10 µA bias using only tsmc18dN/P

models. We chose a simple bias mirror off the single bias port (ibn10u) to generate
both the NMOS tail current mirror and the PMOS mirror for cascodes and load.
Input devices are 20 µm/0.18 µm, cascode PMOS 24 µm/0.18 µm, load PMOS
48 µm/0.18 µm, bias reference NMOS 2 µm/0.18 µm, tail NMOS 4 µm/0.18 µm,
PMOS reference 12 µm/0.18 µm. Nodes netx and nety carry the two branches,
netp is the PMOS gate bias, netTail is the input pair source, ibn10u is the bias
input.

4. Terminate with ends fc_ ota (no leading dot).
5. Append the footer comments and top-level instantiation I1 (net1 net2 net5

net3 net4 net6) fc_ ota exactly.
6. No extra text, no markdown, no code fences.

// Library name: MP4
// Cell name: fc_ota
// View name: schematic
.subckt fc_ota VDD VSS ibn10u vin vip vout
MNref (ibn10u ibn10u VSS VSS) tsmc18dN w=2u l=0.18u
MNtail (netTail ibn10u VSS VSS) tsmc18dN w=4u l=0.18u
MPref (netp netp VDD VDD) tsmc18dP w=12u l=0.18u
MPcas1 (netx netp VDD VDD) tsmc18dP w=24u l=0.18u
MPcas2 (nety netp VDD VDD) tsmc18dP w=24u l=0.18u
MN1 (netx vin netTail VSS) tsmc18dN w=20u l=0.18u
MN2 (nety vip netTail VSS) tsmc18dN w=20u l=0.18u
MPmir (vout netp VDD VDD) tsmc18dP w=48u l=0.18u
.ends fc_ota

// Top -level instantiation
// Library name: MP4
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// Cell name: dut
// View name: schematic
I1 (net1 net2 net5 net3 net4 net6) fc_ota

Analysis
The errors identified in Task 2 predominantly stem from issues related to domain knowledge.
Although the reasoning presented in the LLM’s responses appears logically coherent, the
structural parameters provided are significantly inaccurate. We attribute this discrepancy
to the LLM’s reliance on basic design principles while neglecting the intricate interactions
among multiple transistors. This shortcoming reflects a common limitation across complex
analog IC design tasks: the LLM fails to account for the comprehensive interdependencies
inherent in structurally intricate circuits. Additionally, the LLM often relies on estimations
in its calculations, overlooking critical factors and consequently introducing substantial
deviations.
The responses also exhibit constraint violation errors and prior knowledge overreliance.
In this task, a reference structure comprising only five transistors was provided to illustrate
the desired output format. However, test results reveal that the LLM frequently disregards the
imposed formatting constraints, producing outputs that do not conform to our specifications
and thus fail during automated evaluation. Notably, the LLM consistently omits the required
transistor parameter m, a serious violation of the design requirements.
Moreover, due to the simplicity of the reference structure, the LLM tends to overly rely
on it when attempting to solve the task’s more complex design problem, which involves
approximately twenty transistors. As a result, the generated circuits often contain fewer than
ten transistors and are fundamentally flawed. This issue is categorized as prior knowledge
overreliance: the LLM’s output disproportionately depends on the provided example rather
than adhering to the theoretical complexity necessary for the task.
Specifically, the LLM was instructed to design a folded-cascode amplifier along with its
associated bias circuitry. While gpt-4o-mini demonstrated a high-level understanding of the
folded-cascode topology, its performance deteriorated when tasked with synthesizing a full,
functional design. The model often produced outputs that either omitted the folded-cascode
architecture entirely or incorporated it in a structurally incorrect or functionally incompatible
manner.
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Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Hallucination

Task_id
RK_01

Topic
Structural Design

Task Description
Let the design domain be

Ω = [0, Lx]× [0, Ly], Lx = 6, Ly = 1,

with corner points at (0, 0), (6, 0), (6, 1), and (0, 1).

• Loading: A total downward force F = 5.0 is applied at y = Ly over the interval

x ∈ [2− 0.1, 2 + 0.1],

i.e. centered at (2, 1) and uniformly distributed over a length of 0.2.
• Supports:

– Pin at (0, 0): ux = uy = 0.
– Roller at (6, 0): uy = 0, ux free.

• Material:
E0 = 7× 104, ν = 0.3.
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• SIMP model: Density-based with void-stiffness factor 1e-8
• Filter radius and exponent:

R = 0.05max(Lx, Ly), η = 3.

• Discretization: Approximately Ne ≈ 8000 finite elements.

Your tasks are to:
1. Obtain a topology optimized design that has minimum structural compliance and

volume fraction not exceeding 0.25.
2. Report the minimum compliance (store as C_y_hat) and the achieved volume

fraction vf ∈ [0, 1].
3. Determine if the resulting density field is symmetric in x-direction. If so, set

Dsg_feature = “Symmetric-X”; otherwise, set it to “Asymmetric-X”.

LLM Response (o4-mini)
1. Problem summary:

• 2D domain 6×1, simply supported at (0,0) (pin) and (6,0) (roller).
• Vertical point load P=5 at x=2 on top edge.
• Material: E = 70000, v = 0.3, SIMP, vol fraction ≤ 0.25.
• Goal: topology-optimize for minimum compliance (C_y_hat) at V F ≈ 0.25, and

assess x-symmetry.
2. Analytical compliance estimate for a full solid beam:

• Simply supported beam length L=6, load at a=2 from left (b=4).
• Deflection at load: u = P ·a2·b2/(3·E·I ·L), with I = (1·13)/12 = 1/12 ≈ 0.0833

per unit thickness.
• u ≈ 5 · (224)/(3 · 70000 · 0.0833 · 6) ≈ 0.00305.
• Compliance Cfull = P · u ≈ 5 · 0.00305 ≈ 0.0153.

3. Effect of reduced volume fraction:
• With 25% material, overall stiffness roughly scales by VF, so compliance ≈ Cfull /

VF ≈ 0.0153/0.25 ≈ 0.0612.
4. Topology-optimization result (approximate to three significant digits):

• C_y_hat ≈ 0.061

• VF = 0.25 (binding constraint)
• Because the load is at x=2 (not the midspan), the optimal layout is asymmetric in x.

Therefore Dsg_feature = ‘Asymmetric-X’.

Analysis
The LLM’s compliance estimate suffers primarily from domain knowledge error in treating
the 2D topology optimization problem as if it were a 1D beam bending scenario. Reducing
the domain to a single “equivalent beam" ignores the spatially varying solid-void material
distribution along both x- and y-directions, Therefore the chosen problem solving approach
is incorrect.
Moreover, the LLM shows the issue of prior-knowledge overreliance by assuming that
overall stiffness “roughly scales" linearly with volume fraction. Generally the optimized
layouts concentrate materials along principal stress paths rather than uniformly scaling the
cross section, and therefore, structural stiffness is expected to have a nonlinear relation with
volume fraction [56]. Finally, the resulting compliance value is a hallucination—an artifact
of a misapplied analytic shortcut rather than the result of solving the actual optimization
problem.
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G Task-Level Breakdown of the ENGDESIGN Benchmark804

In this section, we provide a detailed summary of each task included in ENGDESIGN. Table 12 lists all805

tasks with concise descriptions of the underlying design challenge and the corresponding references.806

These tasks span a diverse range of engineering domains. This granular view of the benchmark807

enables researchers to better understand the scope and structure of ENGDESIGN, facilitates targeted808

analysis by domain, and supports the integration of new tasks in future extensions of the benchmark.809

Table 12: Per-task summary of ENGDESIGN, detailing the task descriptions and relevant references
for each task included in the benchmark.

Task-id Task Summary Ref

Topic: Operating System Design

CY_03 Implement the vioblk_read and vioblk_write functions for a virtio
block device driver—setting up virtqueue descriptors, handling
interrupts and blocking waits, and moving data to/from the disk
in block-aligned transfers.

[57], [58],
[59]

libin2_01 Design a multi-level page-table scheme (page size, number of
levels, entries per level) that meets given memory-overhead and
average-translation-time constraints for two devices.

[60], [61]

libin2_02 Determine a single time quantum that, when applied to three given
thread workloads, keeps the sum of average waiting time, context-
switch overhead, and quantum-length penalty within specified
bounds for each case.

[62]

libin2_03 Determine the optimal file-system cluster size that meets both
fragmentation and metadata-overhead constraints given a mod-
eled distribution of small and large file sizes.

[63]

XW_01 Implement separate programs to perform create, read, update,
and delete operations on a provided file system image while
maintaining its integrity.

[64]

XW_02 Implement basic file system operations on a provided file sys-
tem image, including writing UTF-8 data into files by allocating
blocks, updating inodes, and preserving overall integrity.

[64]

XW_03 Implement the create operation to add a new file or directory at
a specified path within a provided file system image structure,
updating inodes and directory entries while enforcing existing-
path, directory, and uniqueness constraints.

[64]

XW_04 Implement the delete operation for a custom file system image
that removes a file or directory, reclaims its blocks and inode, and
updates directory entries and metadata.

[64]

Topic: Computer Architecture Design

DL_01 Tune the top-5 most significant SSD hardware configuration
parameters individually to achieve a 20% improvement in I/O
throughput or average latency for each workload.

[65]

DL_02 Tune SSD layout parameters to achieve a 20% improvement in
I/O throughput or average latency while meeting a 1.7-2.1 TB
usable capacity constraint under specified workload types.

[65]

Yiqi_01 Derive a compute-shift execution plan (spatial and temporal par-
tition factors) for a large FP16 matrix multiplication on a Graph-
core IPU Mk2 to minimize total execution time under per-core
memory and core-count constraints.

[66], [67],
[68], [69],
[70], [71],
[72], [73]

Continued on next page
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Table 12 (continued from previous page)
Task-id Task Summary Ref

Yiqi_02 Derive a compute-shift execution plan that spatially and tempo-
rally partitions a large FP16 matrix multiplication across up to
1,472 IPU Mk2 cores under per-core SRAM and padding con-
straints to minimize total compute and communication time.

[66], [67],
[68], [69],
[70], [71],
[72], [73]

Yuqi_01 Determine per-chip NPU architectural parameters (systolic array
width, HBM bandwidth) and cluster-level resource allocations
(DP/TP/PP, batch size, memory per chip) to meet LLM serving
latency and throughput SLOs in a 3D-torus pod of NPUs.

[74], [75],
[76], [77],
[78], [79],
[80], [81],
[82], [83]

Topic: Control System Design

LX_02 Linearize the normalized magnetic levitation dynamics around the
operating point, design a state-feedback controller and full-order
observer via pole placement, and then assess stability regions of
the closed-loop on the original nonlinear model.

[84]

LX_03 Simulate the open-loop and disturbance responses of a linearized
quarter-car suspension model to extract peak displacements and
settling time, then design a state-feedback controller to meet
ride comfort, bottom-out constraints, critical damping, and faster
settling requirements.

[84]

XG_01 Design a stabilizing controller for an aircraft state-space model
using MATLAB’s loopsyn to achieve a target loop shape with a
crossover frequency of 8 rad/s, while meeting a 0.05 disk-margin
and ensuring performance bound γ < 1.

[85]

XG_02 Design a robust feedback controller via loop shaping for a seventh-
order nanopositioning stage to meet specified bandwidth, gain
margin, and phase margin targets.

[86]

XG_05 Derive a first-order plus dead-time model of a stirred-tank reac-
tor from its step response and design a feedback controller that
meets specified gain/phase margins, overshoot, and settling time
requirements.

[87]

XG_07 Derive the numerical state-space matrices for a quarter-car ac-
tive suspension and then design and tune an H∞ controller in
MATLAB to meet given ride-comfort and handling performance
targets by adjusting the weighting parameter β.

[87]

XG_08 Build a Mamdani fuzzy inference system in MATLAB using
specified membership functions and rules to compute restaurant
tipping based on service and food quality, then evaluate the tip
for given inputs.

[87]

XG_10 Design a PI controller by loop-shaping for a first-order plant at
a specified bandwidth and then add a first-order roll-off filter to
meet a noise-rejection criterion.

[88]

XG_11 Compute the explicit transfer function of a given initial loop-
shaping controller for a third-order plant, then design and tune
a second-order roll-off element so that the closed-loop meets
stability, 1 rad/s bandwidth, ≥ 50◦ phase margin, and ≥ 3 dB
gain margin.

[88]

Continued on next page
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Table 12 (continued from previous page)
Task-id Task Summary Ref

XG_12 Determine the explicit transfer function of an initial gain-and-
integral loop-shaping controller for a resonant plant and then
design a notch filter to attenuate the 13 rad/s resonance so as to
achieve a stable closed-loop system with ≥ 60◦ phase margin
and ≥ 2 dB gain margin.

[88]

XG_13 Design a PID controller for a mass-spring-damper system (m = 1
kg, b = 10 N · s/m, k = 20 N/m) to achieve settling time < 0.2 s,
overshoot < 5%, and zero steady-state error.

[89]

ZC_01 Design a static state-feedback gain K that guarantees robust sta-
bility against additive norm-bounded and dynamic uncertainties
and ensures the closed-loop H∞ norm from w to z is below 0.3.

ZC_02 Determine the largest scalar feedback gain α such that the
discrete-time Lurye interconnection with given state-space matri-
ces and a sector-bounded nonlinearity remains absolutely stable.

ZC_03 Determine the asymptotic ranges of the exploration–exploitation
parameters α and β in a two-phase bandit algorithm that minimize
the product of the expected root cumulative regret and the average
treatment effect estimation error.

Ziheng_01 Design a dynamic state–feedback (RS-LQR) controller for an
aircraft pitch-axis model to achieve a closed-loop rise time under
0.2 s, stability, gain margin > 3 dB, and phase margin > 30◦.

[90]

Ziheng_03 Based on the linearized model of a magnetic levitation system,
design a PID controller that ensures specified performance in
both time and frequency domains.

[91]

KV_02 Propose four numerical control parameters (lowest_current, high-
est_current, on_threshold, off_threshold) for a switched-capacitor
active balancing system of three series Li-ion cells.

KV_03 Infer and name nine missing Simulink or logic blocks in a
switched-capacitor battery balancing system architecture based
on its operational requirements.

Topic: Mechanical Systems

YZ_04 Design a parallel-series configured LFP battery module and its
cooling plate to support 100 A fast charging for 20 minutes
while keeping cell temperature rise ≤ 10 ◦C, temperature gradient
≤ 5 ◦C, and pressure drop ≤ 20 kPa.

[87]

RS_01 Determine the car’s peak achievable speed at any point on the
track and calculate the minimum lap time using the given track
curvature data and vehicle setup parameters.

[92]

RS_02 Determine the car’s peak acceleration and deceleration in m/s2

from its mass, aerodynamics, tire grip, gearing, and engine speed.
[92]

RS_03 Calculate the maximum lateral load on a driver’s neck during
cornering from car setup parameters and the combined head-
helmet mass.

[92]

YX_02 Generate constraint-compliant global and local input samples via
linear relationships and Latin Hypercube Sampling to support
diesel engine calibration.

[87]

Continued on next page
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Table 12 (continued from previous page)
Task-id Task Summary Ref

ZH_02 Determine the optimal heat shield radius for a spherical 250 kg
spacecraft in ballistic re-entry to meet peak heat flux, total heat
load, and deceleration constraints.

[93]

ZH_04 Determine a feasible glide angle, vehicle volume, and ballast
mass for a buoyancy-driven underwater glider to cover 4 km in
≤ 2 hours under given power, depth, and buoyancy constraints.

Topic: Structural Design

RK_01 Generate a 2D topology-optimized design of a rectangular beam
under an asymmetric point load with fixed/roller supports to
minimize compliance at a maximum volume fraction of 0.25,
then report its compliance and volume fraction.

RK_02 Perform a 2D compliance-based topology optimization of a rect-
angular domain under two downward point loads with supports
at its corners, subject to a volume fraction limit of 0.25.

RK_03 Perform 2D topology optimization on a rectangular domain with
specified supports and loading to minimize compliance under a
15% volume fraction constraint.

RK_04 Perform topology optimization on a cracked 2D domain under
given horizontal loads to minimize the maximum stress while
restricting the material volume to 25%.

YF_01 Determine the required wall thickness of an L-shaped extruded
steel beam so that its maximum z-direction displacement under a
specified surface traction remains below 0.1 mm in a static linear
FEA simulation.

YF_02 Determine the required thickness of a simply supported rectangu-
lar steel beam under two quarter-span loads so that its maximum
vertical displacement is less than 1 mm in a 3D PDE Toolbox
simulation.

YF_03 Determine the plate thickness of a rectangular steel cantilever
beam under a specified half-length uniform pressure so that its
maximum vertical deflection stays below 2 mm in a 3D linear
elasticity model.

YF_04 Determine the diameter of a cantilevered solid steel shaft under a
specified torque so that its maximum end-to-end twist does not
exceed 0.05 rad.

YF_05 Determine the required cross-sectional area of the truss member
between Node 2 and Node 3 so that the maximum nodal dis-
placement under a 4000 N load at Node 3 remains below 0.5
mm.

YF_06 Determine the required thickness t of a fixed-edge rectangular
steel plate under uniform pressure to meet a specified deflection
criterion using MATLAB’s PDE Toolbox.

YJ_01 Determine the optimal 2D material distribution on a 64× 64 grid
that minimizes structural compliance under given loads, boundary
conditions, and a volume fraction constraint.

[94], [95]

YJ_02 Perform a topology optimization of a discretized cantilever beam
to minimize compliance under a given volume constraint.

[96]

Continued on next page
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Task-id Task Summary Ref

YJ_03 Set up and solve a topology optimization to distribute material in a
finite-element mesh so as to minimize the Mode I stress-intensity
factor at a crack tip under a volume-fraction constraint.

[96]

Topic: Digital Hardware Design

XY_01 Analyze and extract the 4x4 bit pattern of a specified Tetris tetro-
mino in a given rotation from ROM data, and convert it into a
visual character-based representation for display.

[97], [98],
[99]

XY_03 Design a time-multiplexed 4-digit hexadecimal display driver on
a 50 MHz FPGA that guarantees at least a 60 Hz per-digit refresh
and evaluates worst-case flicker.

[100],
[101],
[97]

XY_04 Design a hardware-efficient color mapping system on an FPGA
for a Tetris game with RGB444 VGA output that supports distinct
element colors and a dynamic Night Mode under a 10-color limit.

[102]

XY_05 Define the per-instruction control signal settings, finite-state-
machine transitions, and detailed explanations for the SLC-3
CPU, including a custom SWAP instruction, under strict hard-
ware and sequencing constraints.

[103],
[104],
[105]

YH_01 Implement a tiled and pipelined GEMM function in Vivado HLS
to maximize DSP utilization on the VCK5000 using block sizes
of 64× 64× 64.

YH_02 Implement a DSP-optimized tiled GEMM in Vivado HLS for
1024 × 1024 matrices using 128 × 128 × 128 blocking on the
VCK5000 platform.

YH_03 Create a synthesizable Vitis HLS GEMM function with AXI
interfaces and loop pipelining for 1024× 1024 matrices targeting
the VCK5000.

YH_04 Design a Vitis HLS-compatible GEMM function for 256× 256
matrices with AXI interfaces and pipelined inner loop targeting
the VCK5000.

NS_PA_SS_02 Design a parameterizable n-bit Gray-code sequence generator
in Verilog that updates on each rising clock edge and resets syn-
chronously with active-low reset to zero.

[106]

NS_PA_SS_03 Design a parameterized 32-entry, 2-read/1-write register file in
synthesizable SystemVerilog with synchronous reset, read/write
enables, and collision detection.

[106]

NS_PA_SS_04 Implement a parameterizable 8-bit Fibonacci LFSR in synthe-
sizable SystemVerilog with synchronous active-low reset, seed
loading, tap buffering, and feedback shifting.

[106]

NS_PA_SS_05 Develop a parameterizable, synthesizable SystemVerilog mod-
ule that captures eight bitwidth-wide input words, performs a
fully unrolled one-cycle bubble sort on them when triggered, and
presents the sorted vector plus optional valid flag.

[106]

NS_PA_SS_06 Design a synthesizable SystemVerilog module that reads two 3-
element vectors serially, computes their dot product in one cycle
after the sixth input, and drives an 18-bit result plus a one-cycle
valid signal with defined reset behavior.

[106]

Continued on next page
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NS_PA_SS_07 Implement a synthesizable 8× 8 register file in Verilog with one
read port, one write port, valid-bit tracking, error flagging, and
synchronous reset/clock behavior.

[106]

NS_PA_SS_08 Develop a fully synchronous, parameterized SystemVerilog mod-
ule that detects a user-loaded 5-bit target pattern in a serial input
stream and pulses a one-cycle ’seen’ flag on each match.

[106]

NS_PA_SS_09 Create a fully synthesizable, parameterized SystemVerilog mod-
ule that converts an N-bit Gray code input into its binary equiva-
lent using a combinational XOR cascade.

[106]

NS_PA_SS_10 Implement a synthesizable SystemVerilog finite-state machine
that reads a serial bitstream, tracks the value modulo 5, and raises
dout when the running value is divisible by 5.

[106]

Topic: Analog Integrated Circuit Design

TB_01 Size the devices in a folded-cascode OTA netlist by assigning
concrete W, L, m, and R values to meet given performance specs
under a fixed testbench.

[107]

TB_02 Design and size a folded-cascode OTA from scratch in SPICE for-
mat to meet specific performance specs using the tsmc18 process
and a given testbench setup.

[107]

TB_03 Size a 5-transistor differential-to-single-ended OTA by assigning
W, L, and m values to meet gain, bandwidth, CMRR, and ICMR
specs using tsmc18 models in a fixed testbench.

[108]

TB_04 Design and size a 5-transistor OTA along with its bias circuit
in a single SPICE netlist to meet performance specs under a
unity-gain testbench.

[108]

TB_05 Size a common-source amplifier with resistive load in SPICE
by tuning NMOS, resistor, and bias parameters to meet gain,
bandwidth, and output voltage specs.

[109]

Topic: Robotics

Ziheng_02 Determine the six joint angles of a 6-DOF serial robot that achieve
a specified end-effector pose given the robot’s screw axes and
home transformation.

[110]

AM_02 Compute two time-parameterized, collision-free trajectories for 2
by 2 robots on a 30 by 30 grid from given start to end points in 20
time steps, avoiding static rectangular obstacles and dynamically
moving pedestrians under a maximum per-step speed of 2 units
in each axis.

AM_03 Compute a time-stamped, grid-based, collision-free trajectory for
a 2 by 2 robot on a 30 by 30 map with static rectangles and three
moving pedestrians, starting at (17,2) and visiting goals A and B
in any order without exceeding a per-step speed of 2 in x or y.

HJ_01 Select refresh rate, acceleration, maximum velocity, and look-
ahead distance settings to complete a 56 m lap in under 10 s with
a maximum 1 m track-off error on a $300 budget.

XZ_01 Compute the shortest collision-free grid path for a small inspec-
tion robot across a 50×40 m construction map with specified
walls and obstacles.

[87]

Continued on next page
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Task-id Task Summary Ref

XZ_02 Compute a smooth, collision-free trajectory for an autonomous
construction vehicle from (0,0,π) to (49,39,π/2) on a 50×40 m
site with fixed obstacles, while respecting a 4 m turning radius
and 0.5 m vehicle clearance.

[87]

XZ_03 Generate a collision-free shortest path on an integer grid in a
Webots world from (0,0,0) to (49,39,0) around defined obstacles.

[87]

XZ_04 Generate a time-parameterized, collision-free 3D trajectory in
a Webots world from a start to a goal point while respecting
zone-based speed constraints.

[87]

YX_01 Compute the world-coordinate corners of a 2D sparse costmap
and then use a Hybrid A* planner with nonholonomic constraints
to find collision-free paths for given start and goal poses.

[87]

ZH_03 Determine wheel diameter, gear ratio, battery capacity, and robot
mass for an electric ground robot to meet specified speed, incline,
and endurance targets.

Topic: Signal Processing

qjlim2_01 Design a rectangular microstrip patch antenna on a Rogers lami-
nate to resonate at 1.537 GHz with ≥ 50 MHz bandwidth, ≥ 3
dBi gain, and fit within a 100 × 100 × 10 mm volume using a
50Ω coaxial feed.

[111],
[112],
[87]

qjlim2_02 Design a free-space strip dipole antenna centered at 3 GHz with
at least 100 MHz bandwidth, ≥ 2 dBi gain, and fitting within a
100× 100 mm footprint.

[113], [87]

qjlim2_04 Design a cylindrical monopole antenna resonant at 0.487 GHz
with S11 ≤ −10 dB, bandwidth ≥ 10MHz, and gain ≥ 0 dBi.

[113], [87]

XG_09 Tune the parameters of Gaussian and triangular membership
functions in a fuzzy inference system to improve edge detection
performance (MSE, PSNR, SSIM) on a grayscale image relative
to a Canny pseudo-ground truth.

[87]

YZ_01 Design a three-stage sample-rate converter—including a Farrow
fractional resampler and two decimating FIR filters—to down-
convert input rates (e.g., 150 MHz) to 30.72 MHz while meeting
LTE passband, stopband, and EVM requirements.

[87]

YZ_02 Derive analytic formulas and determine coefficient sets for SG
filter cutoff and half-magnitude width, then design four weighted
SG filters meeting specified noise-vs-smoothness performance
criteria.

[87]

YZ_03 Design a circularly polarized helical antenna in MATLAB’s An-
tenna Toolbox to operate from 1.3 to 2 GHz, meeting specified
directivity and axial ratio requirements.

[87]

AB_01 Compute first-order statistical features (mean, variance, skewness,
kurtosis) and the GLCM contrast for pixel intensities strictly
inside a given polygonal ROI in a medical image patch.

AB_02 Implement the OpenCV watershed algorithm in Python to seg-
ment the red heart pips and numerals from the white background
in the specified image.

[114]

Continued on next page
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AB_03 Load a hard-coded image, find its largest contour, and compute
both its approximate polygon and convex hull using OpenCV.

[114]

AV_02 Design a digital IIR filter to notch out a 120 Hz resonance in a
2000 Hz-sampled sensor signal while preserving ±15 Hz around
that frequency.

[115]

AV_03 Design an FIR anti-aliasing filter to allow downsampling a 48
kHz audio signal to 8 kHz while preserving the 0-3.5 kHz band
with less than 3 dB ripple.

[115]

HC_03 Estimate the coefficients a, b, and c of a second-order polynomial
y = ax2 + bx + c that best fits a given noisy 2D data set by
minimizing mean squared error.

JY_01 Design and implement an automated test stand using two linear
polarizers, a quarter-wave plate, and rotary motors to control and
measure changes in the Stokes vector of polarized light.

JY_02 Design and apply a Gaussian smoothing filter, horizontal and
vertical edge-detection kernels, and a thresholding step to produce
an edge map from the given image array.

[116]

JY_03 Design a convolutional kernel that performs linear interpolation
to fill zero-valued pixels in the corrupted Degree0 polarization
image and evaluate its effect on AoLP and DoLP outputs.

WJ_01 Design and implement a flexible OpenCV based filter pipeline
choosing and parameterizing one or more denoising filters based
on detected noise types.

YX_03 Compute and combine SNR metrics, integration gains, and vari-
ous radar losses to evaluate the detectability of a 1m2 target at
100 km for an S-band surveillance radar.

[87]
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NeurIPS Paper Checklist810

The checklist is designed to encourage best practices for responsible machine learning research,811

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove812

the checklist: The papers not including the checklist will be desk rejected. The checklist should813

follow the references and follow the (optional) supplemental material. The checklist does NOT count814

towards the page limit.815

Please read the checklist guidelines carefully for information on how to answer these questions. For816

each question in the checklist:817

• You should answer [Yes] , [No] , or [NA] .818

• [NA] means either that the question is Not Applicable for that particular paper or the819

relevant information is Not Available.820

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).821

The checklist answers are an integral part of your paper submission. They are visible to the822

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it823

(after eventual revisions) with the final version of your paper, and its final version will be published824

with the paper.825

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.826

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a827

proper justification is given (e.g., "error bars are not reported because it would be too computationally828

expensive" or "we were unable to find the license for the dataset we used"). In general, answering829

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we830

acknowledge that the true answer is often more nuanced, so please just use your best judgment and831

write a justification to elaborate. All supporting evidence can appear either in the main paper or the832

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification833

please point to the section(s) where related material for the question can be found.834

IMPORTANT, please:835

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",836

• Keep the checklist subsection headings, questions/answers and guidelines below.837

• Do not modify the questions and only use the provided macros for your answers.838

1. Claims839

Question: Do the main claims made in the abstract and introduction accurately reflect the840

paper’s contributions and scope?841

Answer: [Yes]842

Justification: We introduced ENGDESIGN benchmark in this work to benchmark the engi-843

neering design capabilities of current LLMs. The dataset details have been discussed in844

Section 2, and our experimental results are included in Section 3.845

Guidelines:846

• The answer NA means that the abstract and introduction do not include the claims847

made in the paper.848

• The abstract and/or introduction should clearly state the claims made, including the849

contributions made in the paper and important assumptions and limitations. A No or850

NA answer to this question will not be perceived well by the reviewers.851

• The claims made should match theoretical and experimental results, and reflect how852

much the results can be expected to generalize to other settings.853

• It is fine to include aspirational goals as motivation as long as it is clear that these goals854

are not attained by the paper.855

2. Limitations856

Question: Does the paper discuss the limitations of the work performed by the authors?857

Answer: [Yes]858
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Justification: We have discussed the limitations of our work in Appendix B.859

Guidelines:860

• The answer NA means that the paper has no limitation while the answer No means that861

the paper has limitations, but those are not discussed in the paper.862

• The authors are encouraged to create a separate "Limitations" section in their paper.863

• The paper should point out any strong assumptions and how robust the results are to864

violations of these assumptions (e.g., independence assumptions, noiseless settings,865

model well-specification, asymptotic approximations only holding locally). The authors866

should reflect on how these assumptions might be violated in practice and what the867

implications would be.868

• The authors should reflect on the scope of the claims made, e.g., if the approach was869

only tested on a few datasets or with a few runs. In general, empirical results often870

depend on implicit assumptions, which should be articulated.871

• The authors should reflect on the factors that influence the performance of the approach.872

For example, a facial recognition algorithm may perform poorly when image resolution873

is low or images are taken in low lighting. Or a speech-to-text system might not be874

used reliably to provide closed captions for online lectures because it fails to handle875

technical jargon.876

• The authors should discuss the computational efficiency of the proposed algorithms877

and how they scale with dataset size.878

• If applicable, the authors should discuss possible limitations of their approach to879

address problems of privacy and fairness.880

• While the authors might fear that complete honesty about limitations might be used by881

reviewers as grounds for rejection, a worse outcome might be that reviewers discover882

limitations that aren’t acknowledged in the paper. The authors should use their best883

judgment and recognize that individual actions in favor of transparency play an impor-884

tant role in developing norms that preserve the integrity of the community. Reviewers885

will be specifically instructed to not penalize honesty concerning limitations.886

3. Theory assumptions and proofs887

Question: For each theoretical result, does the paper provide the full set of assumptions and888

a complete (and correct) proof?889

Answer: [NA]890

Justification: Our paper does not include theoretical results.891

Guidelines:892

• The answer NA means that the paper does not include theoretical results.893

• All the theorems, formulas, and proofs in the paper should be numbered and cross-894

referenced.895

• All assumptions should be clearly stated or referenced in the statement of any theorems.896

• The proofs can either appear in the main paper or the supplemental material, but if897

they appear in the supplemental material, the authors are encouraged to provide a short898

proof sketch to provide intuition.899

• Inversely, any informal proof provided in the core of the paper should be complemented900

by formal proofs provided in appendix or supplemental material.901

• Theorems and Lemmas that the proof relies upon should be properly referenced.902

4. Experimental result reproducibility903

Question: Does the paper fully disclose all the information needed to reproduce the main ex-904

perimental results of the paper to the extent that it affects the main claims and/or conclusions905

of the paper (regardless of whether the code and data are provided or not)?906

Answer: [Yes]907

Justification: We have open-sourced our dataset and evaluation pipeline to reproduce our908

work.909

Guidelines:910
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• The answer NA means that the paper does not include experiments.911

• If the paper includes experiments, a No answer to this question will not be perceived912

well by the reviewers: Making the paper reproducible is important, regardless of913

whether the code and data are provided or not.914

• If the contribution is a dataset and/or model, the authors should describe the steps taken915

to make their results reproducible or verifiable.916

• Depending on the contribution, reproducibility can be accomplished in various ways.917

For example, if the contribution is a novel architecture, describing the architecture fully918

might suffice, or if the contribution is a specific model and empirical evaluation, it may919

be necessary to either make it possible for others to replicate the model with the same920

dataset, or provide access to the model. In general. releasing code and data is often921

one good way to accomplish this, but reproducibility can also be provided via detailed922

instructions for how to replicate the results, access to a hosted model (e.g., in the case923

of a large language model), releasing of a model checkpoint, or other means that are924

appropriate to the research performed.925

• While NeurIPS does not require releasing code, the conference does require all submis-926

sions to provide some reasonable avenue for reproducibility, which may depend on the927

nature of the contribution. For example928

(a) If the contribution is primarily a new algorithm, the paper should make it clear how929

to reproduce that algorithm.930

(b) If the contribution is primarily a new model architecture, the paper should describe931

the architecture clearly and fully.932

(c) If the contribution is a new model (e.g., a large language model), then there should933

either be a way to access this model for reproducing the results or a way to reproduce934

the model (e.g., with an open-source dataset or instructions for how to construct935

the dataset).936

(d) We recognize that reproducibility may be tricky in some cases, in which case937

authors are welcome to describe the particular way they provide for reproducibility.938

In the case of closed-source models, it may be that access to the model is limited in939

some way (e.g., to registered users), but it should be possible for other researchers940

to have some path to reproducing or verifying the results.941

5. Open access to data and code942

Question: Does the paper provide open access to the data and code, with sufficient instruc-943

tions to faithfully reproduce the main experimental results, as described in supplemental944

material?945

Answer: [Yes]946

Justification: We have provided open access to the benchmark data including all the task947

prompt, domains, and topics. In addition, we have provided a github repo contains all the948

evaluations logs and evaluation pipeline for each task of ENGDESIGN.949

Guidelines:950

• The answer NA means that paper does not include experiments requiring code.951

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/952

public/guides/CodeSubmissionPolicy) for more details.953

• While we encourage the release of code and data, we understand that this might not be954

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not955

including code, unless this is central to the contribution (e.g., for a new open-source956

benchmark).957

• The instructions should contain the exact command and environment needed to run to958

reproduce the results. See the NeurIPS code and data submission guidelines (https:959

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.960

• The authors should provide instructions on data access and preparation, including how961

to access the raw data, preprocessed data, intermediate data, and generated data, etc.962

• The authors should provide scripts to reproduce all experimental results for the new963

proposed method and baselines. If only a subset of experiments are reproducible, they964

should state which ones are omitted from the script and why.965
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• At submission time, to preserve anonymity, the authors should release anonymized966

versions (if applicable).967

• Providing as much information as possible in supplemental material (appended to the968

paper) is recommended, but including URLs to data and code is permitted.969

6. Experimental setting/details970

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-971

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the972

results?973

Answer: [Yes]974

Justification: We can explained our experimental setup in detail in Appendix E.1.975

Guidelines:976

• The answer NA means that the paper does not include experiments.977

• The experimental setting should be presented in the core of the paper to a level of detail978

that is necessary to appreciate the results and make sense of them.979

• The full details can be provided either with the code, in appendix, or as supplemental980

material.981

7. Experiment statistical significance982

Question: Does the paper report error bars suitably and correctly defined or other appropriate983

information about the statistical significance of the experiments?984

Answer: [Yes]985

Justification: We report error bars in Table 10 and Table 11, which presents the detailed986

evaluation results. Specifically, during evaluation, we ran each task three independent trials987

to compute the mean and standard deviation results.988

Guidelines:989

• The answer NA means that the paper does not include experiments.990

• The authors should answer "Yes" if the results are accompanied by error bars, confi-991

dence intervals, or statistical significance tests, at least for the experiments that support992

the main claims of the paper.993

• The factors of variability that the error bars are capturing should be clearly stated (for994

example, train/test split, initialization, random drawing of some parameter, or overall995

run with given experimental conditions).996

• The method for calculating the error bars should be explained (closed form formula,997

call to a library function, bootstrap, etc.)998

• The assumptions made should be given (e.g., Normally distributed errors).999

• It should be clear whether the error bar is the standard deviation or the standard error1000

of the mean.1001

• It is OK to report 1-sigma error bars, but one should state it. The authors should1002

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1003

of Normality of errors is not verified.1004

• For asymmetric distributions, the authors should be careful not to show in tables or1005

figures symmetric error bars that would yield results that are out of range (e.g. negative1006

error rates).1007

• If error bars are reported in tables or plots, The authors should explain in the text how1008

they were calculated and reference the corresponding figures or tables in the text.1009

8. Experiments compute resources1010

Question: For each experiment, does the paper provide sufficient information on the com-1011

puter resources (type of compute workers, memory, time of execution) needed to reproduce1012

the experiments?1013

Answer: [Yes]1014

Justification: We have discussed the required compute resources in Appendix E.1.1015

Guidelines:1016
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• The answer NA means that the paper does not include experiments.1017

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1018

or cloud provider, including relevant memory and storage.1019

• The paper should provide the amount of compute required for each of the individual1020

experimental runs as well as estimate the total compute.1021

• The paper should disclose whether the full research project required more compute1022

than the experiments reported in the paper (e.g., preliminary or failed experiments that1023

didn’t make it into the paper).1024

9. Code of ethics1025

Question: Does the research conducted in the paper conform, in every respect, with the1026

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1027

Answer: [Yes]1028

Justification: This work adheres to the NeurIPS Code of Ethics. All experiments were1029

conducted responsibly, without harm to individuals or groups, and without the use of1030

sensitive or personally identifiable data. We also carefully considered the potential societal1031

impact of our methods and reported both the limitations and potential risks in the paper.1032

Guidelines:1033

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1034

• If the authors answer No, they should explain the special circumstances that require a1035

deviation from the Code of Ethics.1036

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1037

eration due to laws or regulations in their jurisdiction).1038

10. Broader impacts1039

Question: Does the paper discuss both potential positive societal impacts and negative1040

societal impacts of the work performed?1041

Answer: [Yes]1042

Justification: We have discussed the broader impacts of our work in Appendix B.1043

Guidelines:1044

• The answer NA means that there is no societal impact of the work performed.1045

• If the authors answer NA or No, they should explain why their work has no societal1046

impact or why the paper does not address societal impact.1047

• Examples of negative societal impacts include potential malicious or unintended uses1048

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1049

(e.g., deployment of technologies that could make decisions that unfairly impact specific1050

groups), privacy considerations, and security considerations.1051

• The conference expects that many papers will be foundational research and not tied1052

to particular applications, let alone deployments. However, if there is a direct path to1053

any negative applications, the authors should point it out. For example, it is legitimate1054

to point out that an improvement in the quality of generative models could be used to1055

generate deepfakes for disinformation. On the other hand, it is not needed to point out1056

that a generic algorithm for optimizing neural networks could enable people to train1057

models that generate Deepfakes faster.1058

• The authors should consider possible harms that could arise when the technology is1059

being used as intended and functioning correctly, harms that could arise when the1060

technology is being used as intended but gives incorrect results, and harms following1061

from (intentional or unintentional) misuse of the technology.1062

• If there are negative societal impacts, the authors could also discuss possible mitigation1063

strategies (e.g., gated release of models, providing defenses in addition to attacks,1064

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1065

feedback over time, improving the efficiency and accessibility of ML).1066

11. Safeguards1067
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Question: Does the paper describe safeguards that have been put in place for responsible1068

release of data or models that have a high risk for misuse (e.g., pretrained language models,1069

image generators, or scraped datasets)?1070

Answer: [NA]1071

Justification: Our work does not involve the release of any pretrained models, generative1072

systems, or large-scale scraped datasets that would present a high risk of misuse. ENGDE-1073

SIGN is a benchmark comprising structured engineering design tasks, and all associated1074

data is manually curated and domain-specific. It is intended solely for the evaluation of1075

model capabilities in engineering design and does not raise the same risks associated with1076

general-purpose generative models or unfiltered data releases.1077

Guidelines:1078

• The answer NA means that the paper poses no such risks.1079

• Released models that have a high risk for misuse or dual-use should be released with1080

necessary safeguards to allow for controlled use of the model, for example by requiring1081

that users adhere to usage guidelines or restrictions to access the model or implementing1082

safety filters.1083

• Datasets that have been scraped from the Internet could pose safety risks. The authors1084

should describe how they avoided releasing unsafe images.1085

• We recognize that providing effective safeguards is challenging, and many papers do1086

not require this, but we encourage authors to take this into account and make a best1087

faith effort.1088

12. Licenses for existing assets1089

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1090

the paper, properly credited and are the license and terms of use explicitly mentioned and1091

properly respected?1092

Answer: [Yes]1093

Justification: Tasks in ENGDESIGN are curated by individual task contributors, and the1094

corresponding references are cited properly (see Table 12).1095

Guidelines:1096

• The answer NA means that the paper does not use existing assets.1097

• The authors should cite the original paper that produced the code package or dataset.1098

• The authors should state which version of the asset is used and, if possible, include a1099

URL.1100

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1101

• For scraped data from a particular source (e.g., website), the copyright and terms of1102

service of that source should be provided.1103

• If assets are released, the license, copyright information, and terms of use in the1104

package should be provided. For popular datasets, paperswithcode.com/datasets1105

has curated licenses for some datasets. Their licensing guide can help determine the1106

license of a dataset.1107

• For existing datasets that are re-packaged, both the original license and the license of1108

the derived asset (if it has changed) should be provided.1109

• If this information is not available online, the authors are encouraged to reach out to1110

the asset’s creators.1111

13. New assets1112

Question: Are new assets introduced in the paper well documented and is the documentation1113

provided alongside the assets?1114

Answer: [Yes]1115

Justification: The paper introduces a new benchmark, ENGDESIGN, which includes a suite1116

of engineering design tasks along with structured evaluation scripts. Each task is docu-1117

mented with a clear task description, LLM response instruction, and evaluation codebase.1118

Additionally, we provide metadata and instructions for running evaluations, reproducibility1119

guidelines, and license information alongside the released assets. The assets are shared1120

through publicly accessible repositories to support transparent and reproducible research.1121
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Guidelines:1122

• The answer NA means that the paper does not release new assets.1123

• Researchers should communicate the details of the dataset/code/model as part of their1124

submissions via structured templates. This includes details about training, license,1125

limitations, etc.1126

• The paper should discuss whether and how consent was obtained from people whose1127

asset is used.1128

• At submission time, remember to anonymize your assets (if applicable). You can either1129

create an anonymized URL or include an anonymized zip file.1130

14. Crowdsourcing and research with human subjects1131

Question: For crowdsourcing experiments and research with human subjects, does the paper1132

include the full text of instructions given to participants and screenshots, if applicable, as1133

well as details about compensation (if any)?1134

Answer: [NA]1135

Justification: Our study does not involve crowdsourcing nor research with human subjects.1136

Guidelines:1137

• The answer NA means that the paper does not involve crowdsourcing nor research with1138

human subjects.1139

• Including this information in the supplemental material is fine, but if the main contribu-1140

tion of the paper involves human subjects, then as much detail as possible should be1141

included in the main paper.1142

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1143

or other labor should be paid at least the minimum wage in the country of the data1144

collector.1145

15. Institutional review board (IRB) approvals or equivalent for research with human1146

subjects1147

Question: Does the paper describe potential risks incurred by study participants, whether1148

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1149

approvals (or an equivalent approval/review based on the requirements of your country or1150

institution) were obtained?1151

Answer: [NA]1152

Justification: Our study does not involve crowdsourcing nor research with human subjects.1153

Guidelines:1154

• The answer NA means that the paper does not involve crowdsourcing nor research with1155

human subjects.1156

• Depending on the country in which research is conducted, IRB approval (or equivalent)1157

may be required for any human subjects research. If you obtained IRB approval, you1158

should clearly state this in the paper.1159

• We recognize that the procedures for this may vary significantly between institutions1160

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1161

guidelines for their institution.1162

• For initial submissions, do not include any information that would break anonymity (if1163

applicable), such as the institution conducting the review.1164

16. Declaration of LLM usage1165

Question: Does the paper describe the usage of LLMs if it is an important, original, or1166

non-standard component of the core methods in this research? Note that if the LLM is used1167

only for writing, editing, or formatting purposes and does not impact the core methodology,1168

scientific rigorousness, or originality of the research, declaration is not required.1169

Answer: [NA]1170

Justification: The core development of ENGDESIGN in this work does not involve LLMs as1171

any important, original, or non-standard components.1172

Guidelines:1173

52



• The answer NA means that the core method development in this research does not1174

involve LLMs as any important, original, or non-standard components.1175

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1176

for what should or should not be described.1177
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